@phdthesis{Biswas2005, author = {Biswas, Kajal}, title = {Analysis of Nitrogen starvation induced filamentous growth and characterization of putative essential genes in the human fungal pathogen, Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-11554}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {1. Zusammenfassung Candida albicans ist ein opportunistisch pathogener Hefepilz, der sowohl oberfl{\"a}chliche Infektionen der Schleimhaut als auch lebensbedrohliche systemische Infektionen hervorrufen kann. Obwohl die F{\"a}higkeit von C.albicans Infektionen auszul{\"o}sen weitgehend vom Immunstatus des Wirts abh{\"a}ngt, besitzt der Pilz doch auch spezifische Eigenschaften, die eine Kolonisierung, Disseminierung und Anpassung an unterschiedliche Wirtsnischen erm{\"o}glichen und ihn vom harmlosen Kommensalen zum gef{\"a}hrlichen Krankheitsserreger werden lassen. Unter bestimmten Umweltbedingungen geht C.albicans vom Wachstum als sprossende Hefe zum invasiven, filament{\"o}sen Wachstum {\"u}ber, das eine wichtige Rolle in der Pathogenit{\"a}t des Pilzes spielt. Stickstoffmangel ist eines der Signale, die das filament{\"o}se Wachstum in C.albicans induzieren, und die Kontrolle der Morphogenese durch die Verf{\"u}gbarkeit von Stickstoff wurde in dieser Arbeit detailliert untersucht. Ammonium ist f{\"u}r Hefepilze eine bevorzugte Stickstoffquelle, die {\"u}ber spezifische Transporter in die Zelle aufgenommen wird. In der vorliegenden Arbeit konnte gezeigt werden, dass C.albicans zwei Ammoniumpermeasen besitzt, deren Expression durch Stickstoffmangel induziert wird. W{\"a}hrend die Deletion von CaMEP1 oder CaMEP2 keinen Einfluss auf das Wachstum bei limitierenden Ammoniumkonzentrationen hatte, konnten \&\#61508;mep1 \&\#61508;mep2 Doppelmutanten bei Ammoniumkonzentrationen unter 5 mM nicht mehr wachsen. Im Gegensatz zu \&\#61508;mep1 Mutanten bildeten \&\#61508;mep2 Mutanten unter Stickstoffmangel keine Hyphen mehr und wuchsen ausschließlich in der Hefeform. CaMep2p hat also nicht nur eine Funktion als Ammoniumtransporter, sondern spielt auch eine Rolle bei der Induktion des filament{\"o}sen Wachstums. Weitere Experimente zeigten, dass CaMep2p ein weniger effizienter Ammoniumtransporter als CaMep1p ist, daf{\"u}r aber st{\"a}rker exprimiert wird, und dass dieser Unterschied wichtig f{\"u}r die Signalfunktion von CaMep2p ist. Durch Deletionsanalysen konnte bewiesen werden, dass die C-terminale, cytoplasmatische Dom{\"a}ne von CaMep2p essentiell f{\"u}r die Induktion des Hyphenwachstums ist, f{\"u}r den Ammoniumtransport jedoch nicht ben{\"o}tigt wird, und diese beiden Funktionen von CaMep2p daher voneinander getrennt werden k{\"o}nnen. In C.albicans gibt es mindestens zwei Signalwege die das filament{\"o}se Wachstum steuern, eine MAP-Kinase-Kaskade und einen cAMP-abh{\"a}ngigen Signalweg, die in den Transkriptionsfaktoren Cph1p bzw. Efg1p enden. Bei Inaktivierung des einen oder des anderen Signalwegs induziert Stickstoffmangel kein filament{\"o}ses Wachstum mehr. Ein hyperaktives CaMEP2 Allel konnte den filament{\"o}sen Wachstumsdefekt sowohl von \&\#61508;cph1 als auch \&\#61508;efg1 Mutanten aufheben, nicht jedoch den einer \&\#61508;cph1 \&\#61508;efg1 Doppelmutante oder einer Mutante, der das G-Protein Ras1p fehlte, das beide Signalwege aktiviert. Umgekehrt wurde der filament{\"o}se Wachstumsdefekt von \&\#61472;\&\#61508;mep2 Mutanten durch ein dominant-aktives RAS1 Allel bzw. durch die Zugabe von cAMP aufgehoben. Diese Ergebnisse deuten darauf hin, dass CaMep2p bei Stickstoffmangel sowohl den MAP-Kinase- als auch den cAMP-abh{\"a}ngigen Signalweg aktiviert, um filament{\"o}ses Wachstum zu induzieren. In gen{\"u}gend hohen Konzentrationen reprimierte Ammonium das filament{\"o}se Wachstum selbst wenn die Signalwege artifiziell aktiviert waren. Die bevorzugte Stickstoffquelle Ammonium ist deshalb ein Inhibitor der Morphogenese, der durch denselben Transporter in die Zelle aufgenommen wird, der bei Stickstoffmangel das filament{\"o}se Wachstum von C.albicans induziert. Obwohl ein genaues Verst{\"a}ndnis der Virulenzmechanismen von C.albicans auch neue Ans{\"a}tze zur Bek{\"a}mpfung von Infektionen durch diesen Pilz liefern kann, ist doch die Identifizierung und Charakterisierung von essentiellen Genen als potentielle Ziele f{\"u}r die Entwicklung neuer Antimykotika eine Strategie, die von der pharmazeutischen Industrie favorisiert wird. Aus diesem Grund wurden in Zusammenarbeit mit einem Industriepartner drei Gene von C.albicans ausgew{\"a}hlt, die in anderen Pilzen als essentiell beschrieben wurden, und im Rahmen dieser Arbeit funktionell charakterisiert. RAP1 codiert f{\"u}r das Repressor/Aktivator Protein 1, ein Transkriptionsfaktor und Telomerbindeprotein, das in der B{\"a}ckerhefe Saccharomyces cerevisiae essentiell ist. Die Deletion des RAP1 Gens in C.albicans beeintr{\"a}chtigte jedoch nicht die Lebensf{\"a}higkeit der Mutanten, so dass RAP1 kein vielversprechendes Ziel darstellt. CBF1 (centromere binding factor 1) ist in S.cerevisiae wichtig f{\"u}r die korrekte Chromosomenverteilung w{\"a}hrend der Mitose und außerdem auch f{\"u}r die transkriptionelle Aktivierung der Methioninbiosynthesegene; in den verwandten Hefen Kluyveromyces lactis und Candida glabrata ist CBF1 sogar essentiell. C.albicans \&\#61508;cbf1 Mutanten wiesen jedoch keinen erh{\"o}hten Chromosomenverlust auf, so dass CBF1 hier offensichtlich keine Rolle bei der Chromosomensegregation spielt. Allerdings waren die Mutanten auxotroph f{\"u}r schwefelhaltige Aminos{\"a}uren und generell stark im Wachstum beeintr{\"a}chtigt, was zeigte, dass Cbf1p f{\"u}r das normale Wachstum von C.albicans wichtig ist. YIL19 ist in S.cerevisiae ein essentielles Gen und hat eine Funktion bei der Reifung der 18S rRNA. YIL19 stellte sich auch in C.albicans als essentiell heraus. Konditionale Mutanten, in denen YIL19 durch induzierbare, FLP-vermittelte Rekombination aus dem Genom deletiert wurde, waren nicht lebensf{\"a}hig und akkumulierten rRNA Vorstufen. Durch diese Untersuchungen konnte gezeigt werden, dass YIL19 essentiell f{\"u}r diesen wichtigen zellul{\"a}ren Prozess und f{\"u}r die Lebensf{\"a}higkeit von C.albicans ist und sich m{\"o}glicherweise als Ziel f{\"u}r die Entwicklung antifungaler Substanzen eignet.}, subject = {Candida albicans}, language = {en} } @phdthesis{Dabas2008, author = {Dabas, Neelam}, title = {Control of Nitrogen Regulated Virulence Traits of the Human Fungal Pathogen Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-29769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Der Hefepilz Candida albicans ist ein harmloser Kommensale auf den Schleimh{\"a}uten des Gastrointestinal- und Urogenitaltrakts der meisten gesunden Menschen. Bei einer St{\"o}rung der nat{\"u}rlichen Mikroflora oder des Wirtsimmunsystems kann der Pilz jedoch auch oberfl{\"a}chliche und sogar systemische Infektionen verursachen. C. albicans weist eine Reihe von Eigenschaften auf, die zur Virulenz des Erregers beitragen. Dazu geh{\"o}ren die Adh{\"a}renz an unterschiedliche Wirtsoberfl{\"a}chen, die morphologische Variabilit{\"a}t des Pilzes und die Sekretion von Aspartatproteasen. Die Expression vieler dieser Virulenzfaktoren wird unter anderem durch die Verf{\"u}gbarkeit von Stickstoff reguliert. Unter Stickstoffmangelbedingungen wechselt C. albicans vom Wachstum als sprossende Hefe zum filament{\"o}sen Wachstum, und dieser Wechsel wird durch die Ammoniumpermease Mep2p reguliert. Wie die Induktion des filament{\"o}sen Wachstums durch Mep2p kontrolliert wird, ist jedoch weitgehend unbekannt. In der vorliegenden Arbeit wurde eine Mutationsanalyse von Mep2p durchgef{\"u}hrt, um Aminos{\"a}uren zu identifizieren, die an der Signalfunktion dieser Permease beteiligt sind. Die C-terminale cytoplasmatische Dom{\"a}ne von Mep2p wird f{\"u}r den Ammoniumtransport nicht ben{\"o}tigt, ist jedoch essentiell f{\"u}r die Signaltransduktion. Progressive C-terminale Verk{\"u}rzungen von Mep2p zeigten, dass ein MEP2DC433-Allel immer noch in der Lage war, das filament{\"o}se Wachstum zu induzieren, wohingegen die Deletion einer weiteren Aminos{\"a}ure die Morphogenese blockierte. Das Tyrosin an Position 433 (Y433) ist deshalb die letzte Aminos{\"a}ure, die f{\"u}r die Signalfunktion von Mep2p essentiell ist. Um besser zu verstehen, wie die Signalaktivit{\"a}t von Mep2p durch die Verf{\"u}gbarkeit und den Transport von Ammonium reguliert wird, wurden verschiedene hochkonservierte Aminos{\"a}uren mutiert, die vermutlich an der Bindung oder dem Transport von Ammonium in die Zelle beteiligt sind. Die Mutation von D180, von dem postuliert wurde, dass es den initialen Kontakt mit extrazellul{\"a}rem Ammonium erm{\"o}glicht, oder der im Transportkanal lokalisierten Histidine H188 und H342 hatte zur Folge, dass Mep2p nicht mehr exprimiert wurde, so dass diese Aminos{\"a}uren vermutlich f{\"u}r die Proteinstabilit{\"a}t wichtig sind. Die Mutation von F239, das zusammen mit F126 eine extracytosolische Pforte zur Transportpore bildet, verhinderte trotz korrekter Membranlokalisation sowohl den Ammoniumtransport als auch das filament{\"o}se Wachstum. Allerdings f{\"u}hrte auch die Mutation von W167, das vermutlich zusammen mit Y122, F126 und S243 an der Rekrutierung des Ammoniumions an der extrazellul{\"a}ren Seite der Membran beteiligt ist, zur Blockierung des filament{\"o}sen Wachstums, obwohl der Ammoniumtransport kaum beeinflusst war. Dies zeigte, dass die intrazellu{\"a}re Signaltransduktion durch extrazellul{\"a}re Ver{\"a}nderungen in Mep2p beeinflusst werden kann. Die Mutation von Y122 reduzierte die Ammoniumaufnahme weitaus starker als die Mutation von W167, erlaubte jedoch immer noch ein effizientes filament{\"o}ses Wachstum. Die Signalaktivit{\"a}t von Mep2p ist deshalb offensichtlich nicht direkt mit der Transportaktivit{\"a}t des Proteins korreliert. Ein wichtiger Aspekt in der F{\"a}higkeit von Mep2p, die Morphogenese zu stimulieren, ist die vergleichsweise starke Expression des Proteins. Um die Regulation der MEP2-Expression aufzukl{\"a}ren, wurden die cis-regulatorischen Sequenzen und die trans-aktivierenden Faktoren, die die MEP2-Induktion unter Stickstoffmangel vermitteln, identifiziert. Eine Promotoranalyse zeigte, dass zwei mutmaßliche Bindungsstellen f{\"u}r GATA-Transkriptionsfaktoren eine zentrale Rolle in der MEP2-Expression haben, da die Deletion oder Mutation dieser GATAA-Sequenzen die Expression von MEP2 stark reduzierte. Um die Rolle der GATA-Transkriptionsfaktoren Gln3p und Gat1p bei der Regulation der MEP2-Expression zu untersuchen, wurden Mutanten hergestellt, in denen die entsprechenden Gene deletiert waren. Die Expression von Mep2p war in gln3D und gat1D Einzelmutanten stark verringert und in gln3D gat1D Doppelmutanten nicht mehr nachweisbar. Die Deletion von GLN3 hatte auch eine starke Reduktion des filament{\"o}sen Wachstums zur Folge, die durch die konstitutive Expression von MEP2 unter Kontrolle des ADH1-Promotors aufgehoben wurde. Dagegen hatte die Deletion von GAT1 keinen Einfluss auf das filament{\"o}se Wachstum. {\"U}berraschenderweise war das filament{\"o}se Wachstum in den gat1D Mutanten teilweise unabh{\"a}ngig von Mep2p, was darauf hinwies, dass in Abwesenheit von GAT1 andere Signalwege aktiviert werden, die die Morphogenese stimulieren. Diese Ergebnisse zeigten, dass die GATA-Transkriptionsfaktoren Gln3p und Gat1p die Expression der Ammoniumpermease MEP2 kontrollieren und dass Gln3p auch ein wichtiger Regulator des durch Stickstoffmangel induzierten filament{\"o}sen Wachstums von C. albicans ist. Mutanten, in denen die beiden GATA-Transkriptionsfaktoren Gln3p und Gat1p fehlten, waren nicht mehr in der Lage, in einem Medium zu wachsen, das bovines Serumalbumin (BSA) als einzige Stickstoffquelle enth{\"a}lt. Die F{\"a}higkeit von C. albicans, Proteine als einzige Stickstoffquelle zum Wachstum zu verwenden, wird durch die sekretierte Aspartatprotease Sap2p, die die Proteine zu Peptiden abbaut, und durch Oligopeptidtransporter, die diese Peptide in die Zelle aufnehmen, vermittelt. Der Wachstumsdefekt der gln3D gat1D Doppelmutanten war haupts{\"a}chlich durch einen Defekt in der SAP2-Expression verursacht, da die Expression von SAP2 unter Kontrolle des konstitutiven ADH1-Promotors die F{\"a}higkeit zum Wachstum auf BSA wieder herstellte. Es zeigte sich, dass Gln3p und Gat1p die Expression des Transkriptionsfaktors STP1, der f{\"u}r die Induktion von SAP2 in Gegenwart von Proteinen notwendig ist, regulieren. Bei einer Expression von STP1 unter Kontrolle des induzierbaren Tet-Promotors waren Gln3p und Gat1p nicht mehr notwendig f{\"u}r das Wachstum auf Proteinen. Wenn bevorzugte Stickstoffquellen verf{\"u}gbar sind, wird SAP2 auch in Gegenwart von Proteinen reprimiert, und diese Stickstoff-Katabolitrepression korrelierte mit einer reduzierten STP1-Expression. Die Expression von STP1 unter Kontrolle des Tet-Promotors hob diese Repression auf, was zeigte, dass die Regulation der STP1-Expression durch die GATA-Transkriptionsfaktoren eine Schl{\"u}sselrolle sowohl bei der positiven als auch bei der negativen Kontrolle der SAP2-Expression spielt. Eine regulatorische Kaskade, in der die Expression des spezifischen Transkriptionsfaktors Stp1p durch die allgemeinen Regulatoren Gln3p und Gat1p kontrolliert wird, stellt die Expression von SAP2 in C. albicans deshalb unter Stickstoffkontrolle und gew{\"a}hrleistet eine angepasste Expression dieses Virulenzfaktors. Die Ergebnisse dieser Arbeit illustrieren, dass die GATA-Faktoren Gln3p und Gat1p zum Teil {\"u}berlappende aber auch spezifische Funktionen in der Anpassung von C. albicans an die Verf{\"u}gbarkeit verschiedener Stickstoffquellen haben. Diese Anpassungsmechanismen spielen auch eine Rolle in der Pathogenit{\"a}t des Pilzes, wobei die relative Bedeutung von Gln3p und Gat1p vom Zielgen und der Stickstoffquelle abh{\"a}ngt. Diese Erkenntnisse geben einen vertieften Eiblick in die molekularen Grundlagen der Anpassung von C. albicans an unterschiedliche Umweltbedingungen.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Diwischek2008, author = {Diwischek, Florian}, title = {Development of synthesis pathways and characterization of cerulenin analogues as inhibitors of the fatty acid biosynthesis of Mycobacterium tuberculosis and of efflux pump resistant Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-27532}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {The work deals with the synthesis and characterization of cerulenin analogues as inhibitors of efflux pump mediated resistance of Candida albicans isolates and as inhibitors of the fatty acid synthesis enzyme KasA of Mycobacterium tuberculosis. Cerulenin was chosen as the lead structure, being a substrate of the efflux pumps in Candida albicans on one hand and therefore variations on the structure could lead to a blocking of the efflux pumps as in the case of tetracycline and inhibitor 13-CPTC of the TetB efflux pump. On the other hand, cerulenin is a known inhibitor of the FAS system but inhibition is unselective in type I and II FAS. Therefore, analogues could result in increased selectivity towards the type II FAS system in M. tuberculosis. The first cerulenin derivatives were prepared by coupling 2,3-dihydrofuran to the before synthesized 1-octaniodide, followed by ring opening and oxidation in one step by chromic acid and transfer of the resulting 4-keto acid to amides to give analogues 4a-d, 4e was prepared in analogy. To include the epoxide function especially with regard to the mechanism of action of cerulenin in the FAS system (considering known crystal structures of cerulenin and the KasA analogue of E. coli) tetrahydro- and dihydrocerulenin analogues were synthesized. Starting from the corresponding aldehyde, lactone 5 (tetrahydrocerulenin analogues) was obtained via two different routes A and B. Route A included the coupling of the aldehyde 1-nonanal to propiolic acid via a Grignard reaction with subsequent hydrogenation with the Lindlar catalyst under hydrogen pressure to give 5. Via Route B 1-nonanal was coupled to methyl propiolate by n-BuLi with subsequent hydrogenation under reflux with the catalytic system Lindlar cat./NH4HCO2 to yield 5. These hydrogenations were also executed in a microwave oven resulting in better yields and/or reaction times. The lactone 5 was then epoxidized, the ring opened by amidation and the remaining alcohol was oxidized via Collins oxidation to result in tetrahydrocerulenin analogues 8a-e. The same procedure was used for dihydrocerulenin analogues 10a-c except that to obtain the corresponding lactone 9a only route A was used and a further step had to be executed for ring closure. To obtain analogues with all structural features of cerulenin including two double bonds and the epoxide function, a third pathway was chosen. To obtain the future side chain, aldehyde 12 was synthesized by coupling protected 4-pentyn-1-ol to either crotyl bromide or crotyl chloride, which then was deprotected, hydrogenated with Lindlar catalyst under hydrogen pressure and oxidized via a Swern oxidation. The following synthesis sequence starting from 12 was executed similar to that of dihydrocerulenins via the corresponding lactone (51) with the major exception of the oxidation procedure in the last step via TPAP/NMO to result in (4Z,7E)-cerulenin analogues 15a-b. A fourth class of cerulenin analogues was synthesized with the aromatic analogues 17a-e. This synthesis pathway started with the formation of the benzoyl acrylamides 16a-e from benzoylacrylic acid via a mixed anhydride which was prepared with isobutylchloroformate followed by the addition of the corresponding amine. Subsequent epoxidation with H2O2 in basic EtOH gave the aromatic cerulenin analogues 17a-e. Pharmacological testings for the synthesized substances were executed on efflux pump-resistant and -sensitive Candida albicans isolates, on the fatty acid synthesis enzyme KasA of Mycobacterium tuberculosis and on other organisms such as Leishmania major, Trypanosoma brucei brucei, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa within the Sonderforschungsbereich 630.}, subject = {Organische Synthese}, language = {en} } @article{SasseSchilligDierolfetal.2011, author = {Sasse, Christoph and Schillig, Rebecca and Dierolf, Franziska and Weyler, Michael and Schneider, Sabrina and Mogavero, Selene and Rogers, David P. and Morschh{\"a}user, Joachim}, title = {The Transcription Factor Ndt80 Does Not Contribute to Mrr1-, Tac1-, and Upc2-Mediated Fluconazole Resistance in Candida albicans}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69201}, year = {2011}, abstract = {The pathogenic yeast Candida albicans can develop resistance to the widely used antifungal agent fluconazole, which inhibits ergosterol biosynthesis, by the overexpression of genes encoding multidrug efflux pumps or ergosterol biosynthesis enzymes. Zinc cluster transcription factors play a central role in the transcriptional regulation of drug resistance. Mrr1 regulates the expression of the major facilitator MDR1, Tac1 controls the expression of the ABC transporters CDR1 and CDR2, and Upc2 regulates ergosterol biosynthesis (ERG) genes. Gain-of-function mutations in these transcription factors result in constitutive overexpression of their target genes and are responsible for fluconazole resistance in many clinical C. albicans isolates. The transcription factor Ndt80 contributes to the drug-induced upregulation of CDR1 and ERG genes and also binds to the MDR1 and CDR2 promoters, suggesting that it is an important component of all major transcriptional mechanisms of fluconazole resistance. However, we found that Ndt80 is not required for the induction of MDR1 and CDR2 expression by inducing chemicals. CDR2 was even partially derepressed in ndt80D mutants, indicating that Ndt80 is a repressor of CDR2 expression. Hyperactive forms of Mrr1, Tac1, and Upc2 promoted overexpression of MDR1, CDR1/CDR2, and ERG11, respectively, with the same efficiency in the presence and absence of Ndt80. Mrr1- and Tac1-mediated fluconazole resistance was even slightly enhanced in ndt80D mutants compared to wild-type cells. These results demonstrate that Ndt80 is dispensable for the constitutive overexpression of Mrr1, Tac1, and Upc2 target genes and the increased fluconazole resistance of strains that have acquired activating mutations in these transcription factors.}, subject = {Candida albicans}, language = {en} } @phdthesis{Dunkel2013, author = {Dunkel, Nico}, title = {Regulation of virulence-associated traits of the human fungal pathogen Candida albicans by nitrogen availability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83076}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Nitrogen-regulated pathogenesis describes the expression of virulence attributes as direct response to the quantity and quality of an available nitrogen source. As consequence of nitrogen availability, the opportunistic human fungal pathogen Candida albicans changes its morphology and secretes aspartic proteases [SAPs], both well characterized virulence attributes. C. albicans, contrarily to its normally non-pathogenic relative Saccharomyces cerevisiae, is able to utilize proteins, which are considered as abundant and important nitrogen source within the human host. To assimilate complex proteinaceous matter, extracellular proteolysis is followed by uptake of the degradation products through dedicated peptide transporters (di-/tripeptide transporters [PTRs] and oligopeptide transporters [OPTs]). The expression of both traits is transcriptionally controlled by Stp1 - the global regulator of protein utilization - in C. albicans. The aim of the present study was to elucidate the regulation of virulence attributes of the pathogenic fungus C. albicans by nitrogen availability in more detail. Within a genome wide binding profile of Stp1, during growth with proteins, more than 600 Stp1 target genes were identified, thereby confirming its role in the usage of proteins, but also other nitrogenous compounds as nitrogen source. Moreover, the revealed targets suggest an involvement of Stp1 in the general adaption to nutrient availability as well as in the environmental stress response. With the focus on protein utilization and nitrogen-regulated pathogenesis, the regulation of the major secreted aspartic protease Sap2 - additionally one of the prime examples of allelic heterogeneity in C. albicans - was investigated in detail. Thereby, the heterogezygous SAP2 promoter helped to identify an unintended genomic alteration as the true cause of a growth defect of a C. albicans mutant. Additionally, the promoter region, which was responsible for the differential activation of the SAP2 alleles, was delimited. Furthermore, general Sap2 induction was demonstrated to be mediated by distinct cis-acting elements that are required for a high or a low activity of SAP2 expression. For the utilization of proteins as nitrogen source it is also crucial to take up the peptides that are produced by extracellular proteolysis. Therefore, the function and importance of specific peptide transporters was investigated in C. albicans mutants, unable to use peptides as nitrogen source (opt1Δ/Δ opt2Δ/Δ opt3Δ/Δ opt4Δ/Δ opt5Δ/Δ ptr2Δ/Δ ptr22Δ/Δ septuple null mutants). The overexpression of individual transporters in these mutants revealed differential substrate specificities and expanded the specificity of the OPTs to dipeptides, a completely new facet of these transporters. The peptide-uptake deficient mutants were further used to elucidate, whether indeed proteins and peptides are an important in vivo nitrogen source for C. albicans. It was found that during competitive colonization of the mouse intestine these mutants exhibited wild-type fitness, indicating that neither proteins nor peptides are primary nitrogen sources required to efficiently support growth of C. albicans in the mouse gut. Adequate availability of the preferred nitrogen source ammonium represses the utilization of proteins and other alternative nitrogen sources, but also the expression of virulence attributes, like Sap secretion and nitrogen-starvation induced filamentation. In order to discriminate, whether ammonium availability is externally sensed or determined inside the cell by C. albicans, the response to exterior ammonium concentrations of ammonium-uptake deficient mutants (mep1Δ/Δ mep2Δ/Δ null mutants) was investigated. This study showed that presence of an otherwise suppressing ammonium concentration did not inhibit Sap2 proteases secretion and arginine-induced filamentation in these mutants. Conclusively, ammonium availability is primarily determined inside the cell in order to control the expression of virulence traits. In sum, the present work contributes to the current understanding of how C. albicans regulates expression of virulence-associated traits in response to the presence of available nitrogen sources - especially proteins and peptides - in order to adapt its lifestyle within a human host.}, subject = {Candida albicans}, language = {en} } @phdthesis{Schaefer2014, author = {Sch{\"a}fer, Christin Marliese}, title = {Approaching antimicrobial resistance - Structural and functional characterization of the fungal transcription factor Mrr1 from Candida albicans and the bacterial ß-ketoacyl-CoA thiolase FadA5 from Mycobacterium tuberculosis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108400}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The number of fungal infections is rising in Germany and worldwide. These infections are mainly caused by the opportunistic fungal pathogen C. albicans, which especially harms immunocompromised people. With increasing numbers of fungal infections, more frequent and longer lasting treatments are necessary and lead to an increase of drug resistances, for example against the clinically applied therapeutic fluconazole. Drug resistance in C. albicans can be mediated by the Multidrug resistance pump 1 (Mdr1), a membrane transporter belonging to the major facilitator family. However, Mdr1-mediated fluconazole drug resistance is caused by the pump's regulator, the transcription factor Mrr1 (Multidrug resistance regulator 1). It was shown that Mrr1 is hyperactive without stimulation or further activation in resistant strains which is due to so called gain of function mutations in the MRR1 gene. To understand the mechanism that lays behind this constitutive activity of Mrr1, the transcription factor should be structurally and functionally (in vitro) characterized which could provide a basis for successful drug development to target Mdr1-mediated drug resistance caused by Mrr1. Therefore, the entire 1108 amino acid protein was successfully expressed in Escherichia coli. However, further purification was compromised as the protein tended to form aggregates, unsuitable for crystallization trials or further characterization experiments. Expression trials in the eukaryote Pichia pastoris neither yielded full length nor truncated Mrr1 protein. In order to overcome the aggregation problem, a shortened variant, missing the N-terminal 249 amino acids named Mrr1 '250', was successfully expressed in E. coli and could be purified without aggregation. Similar to the wild type Mrr1 '250', selected gain of function variants were successfully cloned, expressed and purified with varying yields and with varying purity. The Mrr1 `250' construct contains most of the described regulatory domains of Mrr1. It was used for crystallization and an initial comparative analysis between the wild type protein and the variants. The proposed dimeric form of the transcription factor, necessary for DNA binding, could be verified for both, the wild type and the mutant proteins. Secondary structure analysis by circular dichroism measurements revealed no significant differences in the overall fold of the wild type and variant proteins. In vitro, the gain of function variants seem to be less stable compared to the wild type protein, as they were more prone to degradation. Whether this observation holds true for the full length protein's stability in vitro and in vivo remains to be determined. The crystallization experiments, performed with the Mrr1 '250' constructs, led to few small needle shaped or cubic crystals, which did not diffract very well and were hardly reproducible. Therefore no structural information of the transcription factor could be gained so far. Infections with M. tuberculosis, the causative agent of tuberculosis, are the leading cause of mortality among bacterial diseases. Especially long treatment times, an increasing number of resistant strains and the prevalence of for decades persisting bacteria create the necessity for new drugs against this disease. The cholesterol import and metabolism pathways were discovered as promising new targets and interestingly they seem to play an important role for the chronic stage of the tuberculosis infection and for persisting bacteria. In this thesis, the 3-ketoacyl-CoA thiolase FadA5 from M. tuberculosis was characterized and the potential for specifically targeting this enzyme was investigated. FadA5 catalyzes the last step of the β-oxidation reaction in the side-chain degradation pathway of cholesterol. We solved the three dimensional structure of this enzyme by X-ray crystallography and obtained two different apo structures and three structures in complex with acetyl-CoA, CoA and a hydrolyzed steroid-CoA, which is the natural product of FadA5. Analysis of the FadA5 apo structures revealed a typical thiolase fold as it is common for biosynthetic and degradative enzymes of this class for one of the structures. The second apo structure showed deviations from the typical thiolase fold. All obtained structures show the enzyme as a dimer, which is consistent with the observed dimer formation in solution. Thus the dimer is likely to be the catalytically active form of the enzyme. Besides the characteristic structural fold, the catalytic triad, comprising two cysteines and one histidine, as well as the typical coenzyme A binding site of enzymes belonging to the thiolase class could be identified. The two obtained apo structures differed significantly from each other. One apo structure is in agreement with the characteristic thiolase fold and the well-known dimer interface could be identified in our structure. The same characteristics were observed in all complex structures. In contrast, the second apo structure followed the thiolase fold only partially. One subdomain, spanning 30 amino acids, was in a different orientation. This reorientation was caused by the formation of two disulfide bonds, including the active site cysteines, which rendered the enzyme inactive. The disulfide bonds together with the resulting domain swap still permitted dimer formation, yet with a significantly shifted dimer interface. The comparison of the apo structures together with the preliminary activity analysis performed by our collaborator suggest, that FadA5 can be inactivated by oxidation and reactivated by reduction. If this redox switch is of biological importance requires further evaluation, however, this would be the first reported example of a bacterial thiolase employing redox regulation. Our obtained complex structures represent different stages of the thiolase reaction cycle. In some complex structures, FadA5 was found to be acetylated at the catalytic cysteine and it was in complex with acetyl-CoA or CoA. These structures, together with the FadA5 structure in complex with a hydrolyzed steroid-CoA, revealed important insights into enzyme dynamics upon ligand binding and release. The steroid-bound structure is as yet a unique example of a thiolase enzyme interacting with a complex ligand. The characterized enzyme was used as platform for modeling studies and for comparison with human thiolases. These studies permitted initial conclusions regarding the specific targetability of FadA5 as a drug target against M. tuberculosis infection, taking the closely related human enzymes into account. Additional analyses led to the proposal of a specific lead compound based on the steroid and ligand interactions within the active site of FadA5.}, subject = {Multidrug-Resistenz}, language = {en} } @article{LeonhardtSpielbergWeberetal.2015, author = {Leonhardt, Ines and Spielberg, Steffi and Weber, Michael and Albrecht-Eckardt, Daniela and Bl{\"a}ss, Markus and Claus, Ralf and Barz, Dagmar and Scherlach, Kirstin and Hertweck, Christian and L{\"o}ffler, J{\"u}rgen and H{\"u}nniger, Kerstin and Kurzai, Oliver}, title = {The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity}, series = {mBio}, volume = {6}, journal = {mBio}, number = {2}, doi = {10.1128/mBio.00143-15}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143756}, pages = {e00143-15}, year = {2015}, abstract = {Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-\(\alpha\)] and macrophage inflammatory protein 1 alpha [MIP-1 \(\alpha\)]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance.}, language = {en} } @article{RemmeleLutherBalkenholetal.2015, author = {Remmele, Christian W. and Luther, Christian H. and Balkenhol, Johannes and Dandekar, Thomas and M{\"u}ller, Tobias and Dittrich, Marcus T.}, title = {Integrated inference and evaluation of host-fungi interaction networks}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {764}, doi = {10.3389/fmicb.2015.00764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148278}, year = {2015}, abstract = {Fungal microorganisms frequently lead to life-threatening infections. Within this group of pathogens, the commensal Candida albicans and the filamentous fungus Aspergillus fumigatus are by far the most important causes of invasive mycoses in Europe. A key capability for host invasion and immune response evasion are specific molecular interactions between the fungal pathogen and its human host. Experimentally validated knowledge about these crucial interactions is rare in literature and even specialized host pathogen databases mainly focus on bacterial and viral interactions whereas information on fungi is still sparse. To establish large-scale host fungi interaction networks on a systems biology scale, we develop an extended inference approach based on protein orthology and data on gene functions. Using human and yeast intraspecies networks as template, we derive a large network of pathogen host interactions (PHI). Rigorous filtering and refinement steps based on cellular localization and pathogenicity information of predicted interactors yield a primary scaffold of fungi human and fungi mouse interaction networks. Specific enrichment of known pathogenicity-relevant genes indicates the biological relevance of the predicted PHI. A detailed inspection of functionally relevant subnetworks reveals novel host fungal interaction candidates such as the Candida virulence factor PLB1 and the anti-fungal host protein APP. Our results demonstrate the applicability of interolog-based prediction methods for host fungi interactions and underline the importance of filtering and refinement steps to attain biologically more relevant interactions. This integrated network framework can serve as a basis for future analyses of high-throughput host fungi transcriptome and proteome data.}, language = {en} } @article{IrmerTarazonaSasseetal.2015, author = {Irmer, Henriette and Tarazona, Sonia and Sasse, Christoph and Olbermann, Patrick and Loeffler, J{\"u}rgen and Krappmann, Sven and Conesa, Ana and Braus, Gerhard H.}, title = {RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior}, series = {BMC Genomics}, volume = {16}, journal = {BMC Genomics}, number = {640}, doi = {10.1186/s12864-015-1853-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151390}, year = {2015}, abstract = {Background: Invasive aspergillosis is started after germination of Aspergillus fumigatus conidia that are inhaled by susceptible individuals. Fungal hyphae can grow in the lung through the epithelial tissue and disseminate hematogenously to invade into other organs. Low fungaemia indicates that fungal elements do not reside in the bloodstream for long. Results: We analyzed whether blood represents a hostile environment to which the physiology of A. fumigatus has to adapt. An in vitro model of A. fumigatus infection was established by incubating mycelium in blood. Our model allowed to discern the changes of the gene expression profile of A. fumigatus at various stages of the infection. The majority of described virulence factors that are connected to pulmonary infections appeared not to be activated during the blood phase. Three active processes were identified that presumably help the fungus to survive the blood environment in an advanced phase of the infection: iron homeostasis, secondary metabolism, and the formation of detoxifying enzymes. Conclusions: We propose that A. fumigatus is hardly able to propagate in blood. After an early stage of sensing the environment, virtually all uptake mechanisms and energy-consuming metabolic pathways are shut-down. The fungus appears to adapt by trans-differentiation into a resting mycelial stage. This might reflect the harsh conditions in blood where A. fumigatus cannot take up sufficient nutrients to establish self-defense mechanisms combined with significant growth.}, language = {en} } @article{DuehringGermerodtSkerkaetal.2015, author = {D{\"u}hring, Sybille and Germerodt, Sebastian and Skerka, Christine and Zipfel, Peter F. and Dandekar, Thomas and Schuster, Stefan}, title = {Host-pathogen interactions between the human innate immune system and Candida albicans - understanding and modeling defense and evasion strategies}, series = {Frontiers in Microbiology}, volume = {6}, journal = {Frontiers in Microbiology}, number = {625}, doi = {10.3389/fmicb.2015.00625}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-151621}, year = {2015}, abstract = {The diploid, polymorphic yeast Candida albicans is one of the most important human pathogenic fungi. C. albicans can grow, proliferate and coexist as a commensal on or within the human host for a long time. However, alterations in the host environment can render C. albicans virulent. In this review, we describe the immunological cross-talk between C. albicans and the human innate immune system. We give an overview in form of pairs of human defense strategies including immunological mechanisms as well as general stressors such as nutrient limitation, pH, fever etc. and the corresponding fungal response and evasion mechanisms. Furthermore, Computational Systems Biology approaches to model and investigate these complex interactions are highlighted with a special focus on game-theoretical methods and agent-based models. An outlook on interesting questions to be tackled by Systems Biology regarding entangled defense and evasion mechanisms is given.}, language = {en} }