@phdthesis{Stoll2015, author = {Stoll, Georg}, title = {Identification of the mRNA-associated TOP3β- TDRD3-FMRP (TTF) -complex and its implication for neurological disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111440}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The propagation of the genetic information into proteins is mediated by messenger- RNA (mRNA) intermediates. In eukaryotes mRNAs are synthesized by RNA- Polymerase II and subjected to translation after various processing steps. Earlier it was suspected that the regulation of gene expression occurs primarily on the level of transcription. In the meantime it became evident that the contribution of post- transcriptional events is at least equally important. Apart from non-coding RNAs and metabolites, this process is in particular controlled by RNA-binding proteins, which assemble on mRNAs in various combinations to establish the so-called "mRNP- code". In this thesis a so far unknown component of the mRNP-code was identified and characterized. It constitutes a hetero-trimeric complex composed of the Tudor domain-containing protein 3 (TDRD3), the fragile X mental retardation protein (FMRP) and the Topoisomerase III beta (TOP3β) and was termed TTF (TOP3β-TDRD3-FMRP) -complex according to its composition. The presented results also demonstrate that all components of the TTF-complex shuttle between the nucleus and the cytoplasm, but are predominantly located in the latter compartment under steady state conditions. Apart from that, an association of the TTF-complex with fully processed mRNAs, not yet engaged in productive translation, was detected. Hence, the TTF-complex is a component of „early" mRNPs. The defined recruitment of the TTF-complex to these mRNPs is not based on binding to distinct mRNA sequence-elements in cis, but rather on an interaction with the so-called exon junction complex (EJC), which is loaded onto the mRNA during the process of pre-mRNA splicing. In this context TDRD3 functions as an adapter, linking EJC, FMRP and TOP3β on the mRNP. Moreover, preliminary results suggest that epigenetic marks within gene promoter regions predetermine the transfer of the TTF-complex onto its target mRNAs. Besides, the observation that TOP3β is able to catalytically convert RNA-substrates disclosed potential activities of the TTF-complex in mRNA metabolism. In combination with the already known functions of FMRP, this finding primarily suggests that the TTF-complex controls the translation of bound mRNAs. In addition to its role in mRNA metabolism, the TTF-complex is interesting from a human genetics perspective as well. It was demonstrated in collaboration with researchers from Finland and the US that apart from FMRP, which was previously linked to neurocognitive diseases, also TOP3β is associated with neurodevelopmental disorders. Understanding the function of the TTF-complex in mRNA metabolism might hence provide important insight into the etiology of these diseases.}, subject = {Messenger-RNS}, language = {en} } @phdthesis{Sivadasan2016, author = {Sivadasan, Rajeeve}, title = {The role of RNA binding proteins in motoneuron diseases}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141907}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Motoneuron diseases form a heterogeneous group of pathologies characterized by the progressive degeneration of motoneurons. More and more genetic factors associated with motoneuron diseases encode proteins that have a function in RNA metabolism, suggesting that disturbed RNA metabolism could be a common underlying problem in several, perhaps all, forms of motoneuron diseases. Recent results suggest that SMN interacts with hnRNP R and TDP-43 in neuronal processes, which are not part of the classical SMN complex. This point to an additional function of SMN, which could contribute to the high vulnerability of spinal motoneurons in spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis (ALS). The current study elucidates functional links between SMN, the causative factor of SMA (spinal muscular atrophy), hnRNP R, and TDP-43, a genetic factor in ALS (amyotrophic lateral sclerosis). In order to characterize the functional interaction of SMN with hnRNP R and TDP-43, we produced recombinant proteins and investigated their interaction by co-immunoprecipitation. These proteins bind directly to each other, indicating that no other co-factors are needed for this interaction. SMN potentiates the ability of hnRNP R and TDP-43 to bind to ß-actin mRNA. Depletion of SMN alters the subcellular distribution of hnRNP R in motoneurons both in SMN-knockdown motoneurons and SMA mutant mouse (delta7 SMA). These data point to functions of SMN beyond snRNP assembly which could be crucial for recruitment and transport of RNA particles into axons and axon terminals, a mechanism which may contribute to SMA pathogenesis and ALS. ALS and FTLD (frontotemporal lobar degeneration) are linked by several lines of evidence with respect to clinical and pathological characteristics. Both sporadic and familial forms are a feature of the ALS-FTLD spectrum, with numerous genes having been associated with these pathological conditions. Both diseases are characterized by the pathological cellular aggregation of proteins. Interestingly, some of these proteins such as TDP-43 and FUS have also common relations not only with ALS-FTLD but also with SMA. Intronic hexanucleotide expansions in C9ORF72 are common in ALS and FTLD but it is unknown whether loss of function, toxicity by the expanded RNA or dipeptides from non ATG-initiated translation is responsible for the pathophysiology. This study tries to characterize the cellular function of C9ORF72 protein. To address this, lentiviral based knockdown and overexpression of C9ORF72 was used in isolated mouse motoneurons. The results clearly show that survival of these motoneurons was not affected by altered C9ORF72 levels, whereas adverse effects on axon growth and growth cone size became apparent after C9ORF72 suppression. Determining the protein interactome revealed several proteins in complexes with C9ORF72. Interestingly, C9ORF72 is present in a complex with cofilin and other actin binding proteins that modulate actin dynamics. These interactions were confirmed both by co-precipitation analyses and in particular by functional studies showing altered actin dynamics in motoneurons with reduced levels of C9ORF72. Importantly, the phosphorylation of cofilin is enhanced in C9ORF72 depleted motoneurons and patient derived lymphoblastoid cells with reduced C9ORF72 levels. These findings indicate that C9ORF72 regulates axonal actin dynamics and the loss of this function could contribute to disease pathomechanisms in ALS and FTLD.}, subject = {Motoneuron}, language = {en} }