@article{NollKrauseBeuerleetal.2022, author = {Noll, Niklas and Krause, Ana-Maria and Beuerle, Florian and W{\"u}rthner, Frank}, title = {Enzyme-like water preorganization in a synthetic molecular cleft for homogeneous water oxidation catalysis}, series = {Nature Catalysis}, journal = {Nature Catalysis}, edition = {accepted version}, doi = {10.1038/s41929-022-00843-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302897}, year = {2022}, abstract = {Inspired by the proficiency of natural enzymes, mimicking of nanoenvironments for precise substrate preorganisation is a promising strategy in catalyst design. However, artificial examples of enzyme-like activation of H\(_2\)O molecules for the challenging oxidative water splitting reaction are hardly explored. Here, we introduce a mononuclear Ru(bda) complex (M1, bda: 2,2'-bipyridine-6,6'-dicarboxylate) equipped with a bipyridine-functionalized ligand to preorganize H\(_2\)O molecules in front of the metal center as in enzymatic clefts. The confined pocket of M1 accelerates chemically driven water oxidation at pH 1 by facilitating a water nucleophilic attack pathway with a remarkable turnover frequency of 140 s\(^{-1}\) that is comparable to the oxygen-evolving complex of photosystem II. Single crystal X-ray analysis of M1 under catalytic conditions allowed the observation of a 7th H\(_2\)O ligand directly coordinated to a RuIII center. Via a well-defined hydrogen-bonding network, another H\(_2\)O substrate is preorganized for the crucial O-O bond formation via nucleophilic attack.}, language = {en} } @article{SchlossarekStepanenkoBeuerleetal.2022, author = {Schlossarek, Tim and Stepanenko, Vladimir and Beuerle, Florian and W{\"u}rthner, Frank}, title = {Self-assembled Ru(bda) Coordination Oligomers as Efficient Catalysts for Visible Light-Driven Water Oxidation in Pure Water}, series = {Angewandte Chemie International Edition}, volume = {61}, journal = {Angewandte Chemie International Edition}, number = {52}, doi = {10.1002/anie.202211445}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-312184}, year = {2022}, abstract = {Water-soluble multinuclear complexes based on ruthenium 2,2′-bipyridine-6,6′-dicarboxylate (bda) and ditopic bipyridine linker units are investigated in three-component visible light-driven water oxidation catalysis. Systematic studies revealed a strong enhancement of the catalytic efficiency in the absence of organic co-solvents and with increasing oligomer length. In-depth kinetic and morphological investigations suggest that the enhanced performance is induced by the self-assembly of linear Ru(bda) oligomers into aggregated superstructures. The obtained turnover frequencies (up to 14.9 s\(^{-1}\)) and turnover numbers (more than 1000) per ruthenium center are the highest reported so far for Ru(bda)-based photocatalytic water oxidation systems.}, language = {en} }