@article{RohmerDobritzTuncbilekDereetal.2022, author = {Rohmer, Carina and Dobritz, Ronja and Tuncbilek-Dere, Dilek and Lehmann, Esther and Gerlach, David and George, Shilpa Elizabeth and Bae, Taeok and Nieselt, Kay and Wolz, Christiane}, title = {Influence of Staphylococcus aureus strain background on Sa3int phage life cycle switches}, series = {Viruses}, volume = {14}, journal = {Viruses}, number = {11}, issn = {1999-4915}, doi = {10.3390/v14112471}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-297209}, year = {2022}, abstract = {Staphylococcus aureus asymptomatically colonizes the nasal cavity of mammals, but it is also a leading cause of life-threatening infections. Most human nasal isolates carry Sa3 phages, which integrate into the bacterial hlb gene encoding a sphingomyelinase. The virulence factor-encoding genes carried by the Sa3-phages are highly human-specific, and most animal strains are Sa3 negative. Thus, both insertion and excision of the prophage could potentially confer a fitness advantage to S. aureus. Here, we analyzed the phage life cycle of two Sa3 phages, Φ13 and ΦN315, in different phage-cured S. aureus strains. Based on phage transfer experiments, strains could be classified into low (8325-4, SH1000, and USA300c) and high (MW2c and Newman-c) transfer strains. High-transfer strains promoted the replication of phages, whereas phage adsorption, integration, excision, or recA transcription was not significantly different between strains. RNASeq analyses of replication-deficient lysogens revealed no strain-specific differences in the CI/Mor regulatory switch. However, lytic genes were significantly upregulated in the high transfer strain MW2c Φ13 compared to strain 8325-4 Φ13. By transcriptional start site prediction, new promoter regions within the lytic modules were identified, which are likely targeted by specific host factors. Such host-phage interaction probably accounts for the strain-specific differences in phage replication and transfer frequency. Thus, the genetic makeup of the host strains may determine the rate of phage mobilization, a feature that might impact the speed at which certain strains can achieve host adaptation.}, language = {en} } @article{NguyenSaisingTribellietal.2019, author = {Nguyen, Minh-Thu and Saising, Jongkon and Tribelli, Paula Maria and Nega, Mulugeta and Diene, Seydina M. and Fran{\c{c}}ois, Patrice and Schrenzel, Jacques and Spr{\"o}er, Cathrin and Bunk, Boyke and Ebner, Patrick and Hertlein, Tobias and Kumari, Nimerta and H{\"a}rtner, Thomas and Wistuba, Dorothee and Voravuthikunchai, Supayang P. and M{\"a}der, Ulrike and Ohlsen, Knut and G{\"o}tz, Friedrich}, title = {Inactivation of farR Causes High Rhodomyrtone Resistance and Increased Pathogenicity in Staphylococcus aureus}, series = {Frontiers in Microbiology}, volume = {10}, journal = {Frontiers in Microbiology}, doi = {10.3389/fmicb.2019.01157}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-224117}, year = {2019}, abstract = {Rhodomyrtone (Rom) is an acylphloroglucinol antibiotic originally isolated from leaves of Rhodomyrtus tomentosa. Rom targets the bacterial membrane and is active against a wide range of Gram-positive bacteria but the exact mode of action remains obscure. Here we isolated and characterized a spontaneous Rom-resistant mutant from the model strain Staphylococcus aureus HG001 (RomR) to learn more about the resistance mechanism. We showed that Rom-resistance is based on a single point mutation in the coding region of farR [regulator of fatty acid (FA) resistance] that causes an amino acid change from Cys to Arg at position 116 in FarR, that affects FarR activity. Comparative transcriptome analysis revealed that mutated farR affects transcription of many genes in distinct pathways. FarR represses for example the expression of its own gene (farR), its flanking gene farE (effector of FA resistance), and other global regulators such as agr and sarA. All these genes were consequently upregulated in the RomR clone. Particularly the upregulation of agr and sarA leads to increased expression of virulence genes rendering the RomR clone more cytotoxic and more pathogenic in a mouse infection model. The Rom-resistance is largely due to the de-repression of farE. FarE is described as an efflux pump for linoleic and arachidonic acids. We observed an increased release of lipids in the RomR clone compared to its parental strain HG001. If farE is deleted in the RomR clone, or, if native farR is expressed in the RomR strain, the corresponding strains become hypersensitive to Rom. Overall, we show here that the high Rom-resistance is mediated by overexpression of farE in the RomR clone, that FarR is an important regulator, and that the point mutation in farR (RomR clone) makes the clone hyper-virulent.}, language = {en} } @article{LoehrMolcanyiPoggenborgetal.2013, author = {L{\"o}hr, Mario and Molcanyi, Marek and Poggenborg, J{\"o}rg and Spuentrup, Elmar and Runge, Matthias and R{\"o}hn, Gabriele and H{\"a}rtig, Wolfgang and Hescheler, J{\"u}rgen and Hampl, J{\"u}rgen A.}, title = {Intracerebral Administration of Heat-Inactivated Staphylococcus Epidermidis Enhances Oncolysis and Prolongs Survival in a 9L Orthotopic Gliosarcoma Model}, series = {Cellular Physiology and Biochemistry}, journal = {Cellular Physiology and Biochemistry}, doi = {10.1159/000350081}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96754}, year = {2013}, abstract = {Background/Aims: The association between postoperative infection and prolonged survival in high-grade glioma is still a matter of debate. Previously we demonstrated that the intracerebral (i.c.) injection of heat-inactivated staphylococcal epitopes (HISE) resulted in a well-defined infux of immunocompetent cells across the blood-brain barrier. The present study investigated the potential antitumoral effect of HISE-immunostimulation in an experimental glioma model. Methods: Wistar rats were intracerebrally implanted with 9L gliosarcoma cells (n=6), 9L cells mixed with HISE (n=12), or phosphate buffered saline (n=4). Tumor growth was measured by serial magnetic resonance imaging (MRI). After death due to the tumor burden, the brains were histopathologically assessed for inflammation and oncolysis. A toxicity assay was performed to quantify potential impairment of HISE on tumor cell growth in vitro. Results: Animals treated by HISE showed a significant increase in average survival and even complete regression of an already established mass in one case. Na{\"i}ve 9L gliosarcomas failed to recruit significant numbers of systemic immune cells. In contrast, concomitant intracerebral HISE inoculation lead to a oncolysis and a distinct peri- and intratumoral infiltration of macrophages, CD8 and CD4 co-expressing T-lymphocytes in two thirds of the tumor-bearing animals. The toxicity screening showed HISE-mediated oncolysis to be ineffective ex vivo. Conclusion: This study describes a novel approach for combatting malignant glioma using inactivated staphylococci as potent immunomodulators. Our results provide an outline for investigating the strategic potential of bacteria as emerging future therapeutics.}, language = {en} }