@article{BoschertvanDintherWeidaueretal.2013, author = {Boschert, Verena and van Dinther, Maarten and Weidauer, Stella and van Pee, Katharina and Muth, Eva-Maria and ten Dijke, Peter and Mueller, Thomas D.}, title = {Mutational Analysis of Sclerostin Shows Importance of the Flexible Loop and the Cystine-Knot for Wnt-Signaling Inhibition}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {11}, doi = {10.1371/journal.pone.0081710}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129862}, pages = {e81710}, year = {2013}, abstract = {The cystine-knot containing protein Sclerostin is an important negative regulator of bone growth and therefore represents a promising therapeutic target. It exerts its biological task by inhibiting the Wnt (wingless and int1) signaling pathway, which participates in bone formation by promoting the differentiation of mesenchymal stem cells to osteoblasts. The core structure of Sclerostin consists of three loops with the first and third loop (Finger 1 and Finger 2) forming a structured \(\beta\)-sheet and the second loop being unstructured and highly flexible. Biochemical data showed that the flexible loop is important for binding of Sclerostin to Wnt co-receptors of the low-density lipoprotein related-protein family (LRP), by interacting with the Wnt co-receptors LRP5 or -6 it inhibits Wnt signaling. To further examine the structural requirements for Wnt inhibition, we performed an extensive mutational study within all three loops of the Sclerostin core domain involving single and multiple mutations as well as truncation of important regions. By this approach we could confirm the importance of the second loop and especially of amino acids Asn92 and Ile94 for binding to LRP6. Based on a Sclerostin variant found in a Turkish family suffering from Sclerosteosis we generated a Sclerostin mutant with cysteines 84 and 142 exchanged thereby removing the third disulfide bond of the cystine-knot. This mutant binds to LRP6 with reduced binding affinity and also exhibits a strongly reduced inhibitory activity against Wnt1 thereby showing that also elements outside the flexible loop are important for inhibition of Wnt by Sclerostin. Additionally, we examined the effect of the mutations on the inhibition of two different Wnt proteins, Wnt3a and Wnt1. We could detect clear differences in the inhibition of these proteins, suggesting that the mechanism by which Sclerostin antagonizes Wnt1 and Wnt3a is fundamentally different.}, language = {en} } @article{ChenReiherHermannLuibletal.2016, author = {Chen, Jiangtian and Reiher, Wencke and Hermann-Luibl, Christiane and Sellami, Azza and Cognigni, Paola and Kondo, Shu and Helfrich-F{\"o}rster, Charlotte and Veenstra, Jan A. and Wegener, Christian}, title = {Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1006346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178170}, year = {2016}, abstract = {Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.}, language = {en} } @article{DusikSenthilanMentzeletal.2014, author = {Dusik, Verena and Senthilan, Pingkalai R. and Mentzel, Benjamin and Hartlieb, Heiko and W{\"u}lbeck, Corina and Yoshii, Taishi and Raabe, Thomas and Helfrich-F{\"o}rster, Charlotte}, title = {The MAP Kinase p38 Is Part of Drosophila melanogaster's Circadian Clock}, series = {PLoS Genetics}, volume = {10}, journal = {PLoS Genetics}, number = {8}, issn = {1553-7404}, doi = {10.1371/journal.pgen.1004565}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119433}, pages = {e1004565}, year = {2014}, abstract = {All organisms have to adapt to acute as well as to regularly occurring changes in the environment. To deal with these major challenges organisms evolved two fundamental mechanisms: the p38 mitogen-activated protein kinase (MAPK) pathway, a major stress pathway for signaling stressful events, and circadian clocks to prepare for the daily environmental changes. Both systems respond sensitively to light. Recent studies in vertebrates and fungi indicate that p38 is involved in light-signaling to the circadian clock providing an interesting link between stress-induced and regularly rhythmic adaptations of animals to the environment, but the molecular and cellular mechanisms remained largely unknown. Here, we demonstrate by immunocytochemical means that p38 is expressed in Drosophila melanogaster's clock neurons and that it is activated in a clock-dependent manner. Surprisingly, we found that p38 is most active under darkness and, besides its circadian activation, additionally gets inactivated by light. Moreover, locomotor activity recordings revealed that p38 is essential for a wild-type timing of evening activity and for maintaining ∼ 24 h behavioral rhythms under constant darkness: flies with reduced p38 activity in clock neurons, delayed evening activity and lengthened the period of their free-running rhythms. Furthermore, nuclear translocation of the clock protein Period was significantly delayed on the expression of a dominant-negative form of p38b in Drosophila's most important clock neurons. Western Blots revealed that p38 affects the phosphorylation degree of Period, what is likely the reason for its effects on nuclear entry of Period. In vitro kinase assays confirmed our Western Blot results and point to p38 as a potential "clock kinase" phosphorylating Period. Taken together, our findings indicate that the p38 MAP Kinase is an integral component of the core circadian clock of Drosophila in addition to playing a role in stress-input pathways.}, language = {en} } @article{IsaiasDipaolaMichietal.2014, author = {Isaias, Ioannis Ugo and Dipaola, Mariangela and Michi, Marlies and Marzegan, Alberto and Volkmann, Jens and Rodocanachi Roidi, Mariana L. and Frigo, Carlo Albino and Cavallari, Paolo}, title = {Gait Initiation in Children with Rett Syndrome}, series = {PLoS ONE}, volume = {9}, journal = {PLoS ONE}, number = {4}, issn = {1932-6203}, doi = {10.1371/journal.pone.0092736}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119789}, pages = {e92736}, year = {2014}, abstract = {Rett syndrome is an X-linked neurodevelopmental condition mainly characterized by loss of spoken language and a regression of purposeful hand use, with the development of distinctive hand stereotypies, and gait abnormalities. Gait initiation is the transition from quiet stance to steady-state condition of walking. The associated motor program seems to be centrally mediated and includes preparatory adjustments prior to any apparent voluntary movement of the lower limbs. Anticipatory postural adjustments contribute to postural stability and to create the propulsive forces necessary to reach steady-state gait at a predefined velocity and may be indicative of the effectiveness of the feedforward control of gait. In this study, we examined anticipatory postural adjustments associated with gait initiation in eleven girls with Rett syndrome and ten healthy subjects. Muscle activity (tibialis anterior and soleus muscles), ground reaction forces and body kinematic were recorded. Children with Rett syndrome showed a distinctive impairment in temporal organization of all phases of the anticipatory postural adjustments. The lack of appropriate temporal scaling resulted in a diminished impulse to move forward, documented by an impairment in several parameters describing the efficiency of gait start: length and velocity of the first step, magnitude and orientation of centre of pressure-centre of mass vector at the instant of (swing-)toe off. These findings were related to an abnormal muscular activation pattern mainly characterized by a disruption of the synergistic activity of antagonistic pairs of postural muscles. This study showed that girls with Rett syndrome lack accurate tuning of feedforward control of gait.}, language = {en} } @article{MildnerRoces2016, author = {Mildner, Stephanie and Roces, Flavio}, title = {Plasticity of Daily Behavioral Rhythms in Foragers and Nurses of the Ant Camponotus rufipes: Influence of Social Context and Feeding Times}, series = {PLoS One}, volume = {12}, journal = {PLoS One}, number = {1}, doi = {10.1371/journal.pone.0169244}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-148010}, pages = {e0169244}, year = {2016}, abstract = {Daily activities within an ant colony need precise temporal organization, and an endogenous clock appears to be essential for such timing processes. A clock drives locomotor rhythms in isolated workers in a number of ant species, but its involvement in activities displayed in the social context is unknown. We compared locomotor rhythms in isolated individuals and behavioral rhythms in the social context of workers of the ant Camponotus rufipes. Both forager and nurse workers exhibited circadian rhythms in locomotor activity under constant conditions, indicating the involvement of an endogenous clock. Activity was mostly nocturnal and synchronized with the 12:12h light-dark-cycle. To evaluate whether rhythmicity was maintained in the social context and could be synchronized with non-photic zeitgebers such as feeding times, daily behavioral activities of single workers inside and outside the nest were quantified continuously over 24 hours in 1656 hours of video recordings. Food availability was limited to a short time window either at day or at night, thus mimicking natural conditions of temporally restricted food access. Most foragers showed circadian foraging behavior synchronized with food availability, either at day or nighttime. When isolated thereafter in single locomotor activity monitors, foragers mainly displayed arrhythmicity. Here, high mortality suggested potential stressful effects of the former restriction of food availability. In contrast, nurse workers showed high overall activity levels in the social context and performed their tasks all around the clock with no circadian pattern, likely to meet the needs of the brood. In isolation, the same individuals exhibited in turn strong rhythmic activity and nocturnality. Thus, endogenous activity rhythms were inhibited in the social context, and timing of daily behaviors was flexibly adapted to cope with task demands. As a similar socially-mediated plasticity in circadian rhythms was already shown in honey bees, the temporal organization in C. rufipes and honey bees appear to share similar basic features.}, language = {en} }