@article{SacepeOostingaLietal.2011, author = {Sac{\´e}p{\´e}, Benjamin and Oostinga, Jeroen B. and Li, Jian and Ubaldini, Alberto and Couto, Nuno J. G. and Giannini, Enrico and Morpurgo, Alberto F.}, title = {Gate-tuned normal and superconducting transport at the surface of a topological insulator}, series = {Nature Communications}, volume = {2}, journal = {Nature Communications}, doi = {10.1038/ncomms1586}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-140175}, pages = {575, 1-7}, year = {2011}, abstract = {Three-dimensional topological insulators are characterized by the presence of a bandgap in their bulk and gapless Dirac fermions at their surfaces. New physical phenomena originating from the presence of the Dirac fermions are predicted to occur, and to be experimentally accessible via transport measurements in suitably designed electronic devices. Here we study transport through superconducting junctions fabricated on thin Bi2Se3 single crystals, equipped with a gate electrode. In the presence of perpendicular magnetic field B, sweeping the gate voltage enables us to observe the filling of the Dirac fermion Landau levels, whose character evolves continuously from electron- to hole-like. When B=0, a supercurrent appears, whose magnitude can be gate tuned, and is minimum at the charge neutrality point determined from the Landau level filling. Our results demonstrate how gated nano-electronic devices give control over normal and superconducting transport of Dirac fermions at an individual surface of a three-dimensional topological insulators.}, language = {en} } @article{TessmerKaurLinetal.2013, author = {Tessmer, Ingrid and Kaur, Parminder and Lin, Jiangguo and Wang, Hong}, title = {Investigating bioconjugation by atomic force microscopy}, series = {Journal of Nanobiotechnology}, volume = {11}, journal = {Journal of Nanobiotechnology}, number = {25}, doi = {10.1186/1477-3155-11-25}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-129477}, year = {2013}, abstract = {Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures.}, language = {en} }