@article{BhavsarSinghSharmaetal.2016, author = {Bhavsar, Shefalee K. and Singh, Yogesh and Sharma, Piyush and Khairnar, Vishal and Hosseinzadeh, Zohreh and Zhang, Shaqiu and Palmada, Monica and Sabolic, Ivan and Koepsell, Hermann and Lang, Karl S. and Lang, Philipp A. and Lang, Florian}, title = {Expression of JAK3 Sensitive Na\(^+\) Coupled Glucose Carrier SGLT1 in Activated Cytotoxic T Lymphocytes}, series = {Cellular Physiology and Biochemistry}, volume = {39}, journal = {Cellular Physiology and Biochemistry}, number = {3}, doi = {10.1159/000447827}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164900}, pages = {1209-1228}, year = {2016}, abstract = {Background: Similar to tumor cells, activated T-lymphocytes generate ATP mainly by glycolytic degradation of glucose. Lymphocyte glucose uptake involves non-concentrative glucose carriers of the GLUT family. In contrast to GLUT isoforms, Na+-coupled glucose-carrier SGLT1 accumulates glucose against glucose gradients and is effective at low extracellular glucose concentrations. The present study explored expression and regulation of SGLT1 in activated murine splenic cytotoxic T cells (CTLs) and human Jurkat T cells. Methods: FACS analysis, immunofluorescence, confocal microscopy, chemiluminescence and Western blotting were employed to estimate SGLT1 expression, function and regulation in lymphocytes, as well as dual electrode voltage clamp in SGLT1 ± JAK3 expressing Xenopus oocytes to quantify the effect of janus kinase3 (JAK3) on SGLT1 function. Results: SGLT1 is expressed in murine CTLs and also in human Jurkat T cells. 2-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose uptake was significantly decreased by SGLT1-blocker phloridzin (0.2 mM) and by pharmacological inhibition of JAK3 with WHI-P131 (156 µM), WHI-P154 (11.2 µM) and JAK3 inhibitor VI (0.5 µM). Electrogenic glucose transport (Iglucose) in Xenopus oocytes expressing human SGLT1 was increased by additional expression of human wild type JAK3, active A568VJAK3 but not inactive K851AJAK3. Coexpression of JAK3 enhanced the maximal transport rate without significantly modifying affinity of the carrier. Iglucose in SGLT1+JAK3 expressing oocytes was significantly decreased by WHI-P154 (11.2 µM). JAK3 increased the SGLT1 protein abundance in the cell membrane. Inhibition of carrier insertion by brefeldin A (5 µM) in SGLT1+JAK3 expressing oocytes resulted in a decline of Iglucose, which was similar in presence and absence of JAK3. Conclusions: SGLT1 is expressed in murine cytotoxic T cells and human Jurkat T cells and significantly contributes to glucose uptake in those cells post activation. JAK3 up-regulates SGLT1 activity by increasing the carrier protein abundance in the cell membrane, an effect enforcing cellular glucose uptake into activated lymphocytes and thus contributing to the immune response.}, language = {en} } @article{BoschertFrischBacketal.2016, author = {Boschert, V. and Frisch, C. and Back, J. W. and van Pee,, K. and Weidauer, S. E. and Muth, E.-M. and Schmieder, P. and Beerbaum, M. and Knappik, A. and Timmerman, P. and Mueller, T. D.}, title = {The sclerostin-neutralizing antibody AbD09097 recognizes an epitope adjacent to sclerostin's binding site for the Wnt co-receptor LRP6}, series = {Open Biology}, volume = {6}, journal = {Open Biology}, doi = {10.1098/rsob.160120}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-177925}, year = {2016}, abstract = {The glycoprotein sclerostin has been identified as a negative regulator of bone growth. It exerts its function by interacting with the Wnt co-receptor LRP5/6, blocks the binding of Wnt factors and thereby inhibits Wnt signalling. Neutralizing anti-sclerostin antibodies are able to restore Wnt activity and enhance bone growth thereby presenting a new osteoanabolic therapy approach for diseases such as osteoporosis. We have generated various Fab antibodies against human and murine sclerostin using a phage display set-up. Biochemical analyses have identified one Fab developed against murine sclerostin, AbD09097 that efficiently neutralizes sclerostin's Wnt inhibitory activity. In vitro interaction analysis using sclerostin variants revealed that this neutralizing Fab binds to sclerostin's flexible second loop, which has been shown to harbour the LRP5/6 binding motif. Affinity maturation was then applied to AbD09097, providing a set of improved neutralizing Fab antibodies which particularly bind human sclerostin with enhanced affinity. Determining the crystal structure of AbD09097 provides first insights into how this antibody might recognize and neutralize sclerostin. Together with the structure-function relationship derived from affinity maturation these new data will foster the rational design of new and highly efficient anti-sclerostin antibodies for the therapy of bone loss diseases such as osteoporosis.}, language = {en} } @article{BoehmScherzerShabalaetal.2016, author = {B{\"o}hm, J. and Scherzer, S. and Shabala, S. and Krol, E. and Neher, E. and Mueller, T. D. and Hedrich, R.}, title = {Venus flytrap HKT1-type channel provides for prey sodium uptake into carnivorous plant without conflicting with electrical excitability}, series = {Molecular Plant}, volume = {9}, journal = {Molecular Plant}, number = {3}, doi = {10.1016/j.molp.2015.09.017}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-189803}, pages = {428-436}, year = {2016}, abstract = {The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na\(^+\)- and K\(^+\)-permeable mutants function as ion channels rather than K\(^+\) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na\(^+\)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Salano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus Flytrap Dionaea muscipula Counts Prey-Induced Action Potentials to Induce Sodium Uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128054}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na+-rich animal and nutrition for the plant.}, subject = {Venusfliegenfalle}, language = {en} } @article{BoehmScherzerKroletal.2016, author = {B{\"o}hm, Jennifer and Scherzer, S{\"o}nke and Krol, Elzbieta and Kreuzer, Ines and von Meyer, Katharina and Lorey, Christian and Mueller, Thomas D. and Shabala, Lana and Monte, Isabel and Solano, Roberto and Al-Rasheid, Khaled A. S. and Rennenberg, Heinz and Shabala, Sergey and Neher, Erwin and Hedrich, Rainer}, title = {The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake}, series = {Current Biology}, volume = {26}, journal = {Current Biology}, number = {3}, doi = {10.1016/j.cub.2015.11.057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-190870}, pages = {286-295}, year = {2016}, abstract = {Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant.}, language = {en} } @article{ChopraBiehlSteinfattetal.2016, author = {Chopra, Martin and Biehl, Marlene and Steinfatt, Tim and Brandl, Andreas and Kums, Juliane and Amich, Jorge and Vaeth, Martin and Kuen, Janina and Holtappels, Rafaela and Podlech, J{\"u}rgen and Mottok, Anja and Kraus, Sabrina and Jord{\´a}n-Garotte, Ana-Laura and B{\"a}uerlein, Carina A. and Brede, Christian and Ribechini, Eliana and Fick, Andrea and Seher, Axel and Polz, Johannes and Ottmueller, Katja J. and Baker, Jeannette and Nishikii, Hidekazu and Ritz, Miriam and Mattenheimer, Katharina and Schwinn, Stefanie and Winter, Thorsten and Sch{\"a}fer, Viktoria and Krappmann, Sven and Einsele, Hermann and M{\"u}ller, Thomas D. and Reddehase, Matthias J. and Lutz, Manfred B. and M{\"a}nnel, Daniela N. and Berberich-Siebelt, Friederike and Wajant, Harald and Beilhack, Andreas}, title = {Exogenous TNFR2 activation protects from acute GvHD via host T reg cell expansion}, series = {Journal of Experimental Medicine}, volume = {213}, journal = {Journal of Experimental Medicine}, number = {9}, doi = {10.1084/jem.20151563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187640}, pages = {1881-1900}, year = {2016}, abstract = {Donor CD4\(^+\)Foxp3\(^+\) regulatory T cells (T reg cells) suppress graft-versus-host disease (GvHD) after allogeneic hematopoietic stem cell transplantation (HCT allo-HCT]). Current clinical study protocols rely on the ex vivo expansion of donor T reg cells and their infusion in high numbers. In this study, we present a novel strategy for inhibiting GvHD that is based on the in vivo expansion of recipient T reg cells before allo-HCT, exploiting the crucial role of tumor necrosis factor receptor 2 (TNFR2) in T reg cell biology. Expanding radiation-resistant host T reg cells in recipient mice using a mouse TNFR2-selective agonist before allo-HCT significantly prolonged survival and reduced GvHD severity in a TNFR2-and T reg cell-dependent manner. The beneficial effects of transplanted T cells against leukemia cells and infectious pathogens remained unaffected. A corresponding human TNFR2-specific agonist expanded human T reg cells in vitro. These observations indicate the potential of our strategy to protect allo-HCT patients from acute GvHD by expanding T reg cells via selective TNFR2 activation in vivo.}, language = {en} } @article{CicovaDejungSkalickyetal.2016, author = {Cicova, Zdenka and Dejung, Mario and Skalicky, Tomas and Eisenhuth, Nicole and Hanselmann, Steffen and Morriswood, Brooke and Figueiredo, Luisa M. and Butter, Falk and Janzen, Christian J.}, title = {Two flagellar BAR domain proteins in Trypanosoma brucei with stage-specific regulation}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, doi = {10.1038/srep35826}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-181021}, year = {2016}, abstract = {Trypanosomes are masters of adaptation to different host environments during their complex life cycle. Large-scale proteomic approaches provide information on changes at the cellular level, and in a systematic way. However, detailed work on single components is necessary to understand the adaptation mechanisms on a molecular level. Here, we have performed a detailed characterization of a bloodstream form (BSF) stage-specific putative flagellar host adaptation factor Tb927.11.2400, identified previously in a SILAC-based comparative proteome study. Tb927.11.2400 shares 38\% amino acid identity with TbFlabarin (Tb927.11.2410), a procyclic form (PCF) stage-specific flagellar BAR domain protein. We named Tb927.11.2400 TbFlabarin-like (TbFlabarinL), and demonstrate that it originates from a gene duplication event, which occurred in the African trypanosomes. TbFlabarinL is not essential for the growth of the parasites under cell culture conditions and it is dispensable for developmental differentiation from BSF to the PCF in vitro. We generated TbFlabarinL-specific antibodies, and showed that it localizes in the flagellum. Co-immunoprecipitation experiments together with a biochemical cell fractionation suggest a dual association of TbFlabarinL with the flagellar membrane and the components of the paraflagellar rod.}, language = {en} } @article{GalloWardFotheringhametal.2016, author = {Gallo, Linda A. and Ward, Micheal S. and Fotheringham, Amelia K. and Zhuang, Aowen and Borg, Danielle J. and Flemming, Nicole B. and Harvie, Ben M. and Kinneally, Toni L. and Yeh, Shang-Ming and McCarthy, Domenica A. and Koepsell, Hermann and Vallon, Volker and Pollock, Carol and Panchapakesan, Usha and Forbes, Josephine M.}, title = {Once daily administration of the SGLT2 inhibitor, empagliflozin, attenuates markers of renal fibrosis without improving albuminuria in diabetic db/db mice}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {26428}, doi = {10.1038/srep26428}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167678}, year = {2016}, abstract = {Blood glucose control is the primary strategy to prevent complications in diabetes. At the onset of kidney disease, therapies that inhibit components of the renin angiotensin system (RAS) are also indicated, but these approaches are not wholly effective. Here, we show that once daily administration of the novel glucose lowering agent, empagliflozin, an SGLT2 inhibitor which targets the kidney to block glucose reabsorption, has the potential to improve kidney disease in type 2 diabetes. In male db/db mice, a 10-week treatment with empagliflozin attenuated the diabetes-induced upregulation of profibrotic gene markers, fibronectin and transforming-growth-factor-beta. Other molecular (collagen IV and connective tissue growth factor) and histological (tubulointerstitial total collagen and glomerular collagen IV accumulation) benefits were seen upon dual therapy with metformin. Albuminuria, urinary markers of tubule damage (kidney injury molecule-1, KIM-1 and neutrophil gelatinase-associated lipocalin, NGAL), kidney growth, and glomerulosclerosis, however, were not improved with empagliflozin or metformin, and plasma and intra-renal renin activity was enhanced with empagliflozin. In this model, blood glucose lowering with empagliflozin attenuated some molecular and histological markers of fibrosis but, as per treatment with metformin, did not provide complete renoprotection. Further research to refine the treatment regimen in type 2 diabetes and nephropathy is warranted.}, language = {en} } @article{HornKellerHildebrandtetal.2016, author = {Horn, Hannes and Keller, Alexander and Hildebrandt, Ulrich and K{\"a}mpfer, Peter and Riederer, Markus and Hentschel, Ute}, title = {Draft genome of the \(Arabidopsis\) \(thaliana\) phyllosphere bacterium, \(Williamsia\) sp. ARP1}, series = {Standards in Genomic Sciences}, volume = {11}, journal = {Standards in Genomic Sciences}, number = {8}, doi = {10.1186/s40793-015-0122-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146008}, year = {2016}, abstract = {The Gram-positive actinomycete \(Williamsia\) sp. ARP1 was originally isolated from the \(Arabidopsis\) \(thaliana\) phyllosphere. Here we describe the general physiological features of this microorganism together with the draft genome sequence and annotation. The 4,745,080 bp long genome contains 4434 protein-coding genes and 70 RNA genes. To our knowledge, this is only the second reported genome from the genus \(Williamsia\) and the first sequenced strain from the phyllosphere. The presented genomic information is interpreted in the context of an adaptation to the phyllosphere habitat.}, language = {en} } @article{JahnMarkertRyuetal.2016, author = {Jahn, Martin T. and Markert, Sebastian M. and Ryu, Taewoo and Ravasi, Timothy and Stigloher, Christian and Hentschel, Ute and Moitinho-Silva, Lucas}, title = {Shedding light on cell compartmentation in the candidate phylum Poribacteria by high resolution visualisation and transcriptional profiling}, series = {Scientific Reports}, volume = {6}, journal = {Scientific Reports}, number = {35860}, doi = {10.1038/srep35860}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167513}, year = {2016}, abstract = {Assigning functions to uncultivated environmental microorganisms continues to be a challenging endeavour. Here, we present a new microscopy protocol for fluorescence in situ hybridisation-correlative light and electron microscopy (FISH-CLEM) that enabled, to our knowledge for the first time, the identification of single cells within their complex microenvironment at electron microscopy resolution. Members of the candidate phylum Poribacteria, common and uncultivated symbionts of marine sponges, were used towards this goal. Cellular 3D reconstructions revealed bipolar, spherical granules of low electron density, which likely represent carbon reserves. Poribacterial activity profiles were retrieved from prokaryotic enriched sponge metatranscriptomes using simulation-based optimised mapping. We observed high transcriptional activity for proteins related to bacterial microcompartments (BMC) and we resolved their subcellular localisation by combining FISH-CLEM with immunohistochemistry (IHC) on ultra-thin sponge tissue sections. In terms of functional relevance, we propose that the BMC-A region may be involved in 1,2-propanediol degradation. The FISH-IHC-CLEM approach was proven an effective toolkit to combine -omics approaches with functional studies and it should be widely applicable in environmental microbiology.}, language = {en} }