@phdthesis{Turakhiya2019, author = {Turakhiya, Ankit}, title = {Functional characterization of the role of ZFAND1 in stress granule turnover}, doi = {10.25972/OPUS-16375}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163751}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Protein quality control systems are critical for cellular proteostasis and survival under stress conditions. The ubiquitin proteasome system (UPS) plays a pivotal role in proteostasis by eliminating misfolded and damaged proteins. However, exposure to the environmental toxin arsenite results in the accumulation of polyubiquitylated proteins, indicating an overload of the UPS. Arsenite stress induces the rapid formation of stress granules (SGs), which are cytoplasmic assemblies of mRNPs stalled in translation initiation. The mammalian proteins ZFAND2A/B (also known as AIRAP and AIRAPL, respectively) bind to the 26S proteasome, and ZFAND2A has been shown to adapt proteasome activity to arsenite stress. They belong to a small subfamily of AN1 type zinc finger containing proteins that also comprises the unexplored mammalian member ZFAND1 and its yeast homolog Cuz1. In this thesis, the cellular function of Cuz1 and ZFAND1 was investigated. Cuz1/ZFAND1 was found to interact with the ubiquitin-selective, chaperone-like ATPase Cdc48/p97 and with the 26S proteasome. The interaction between Cuz1/ZFAND1 and Cdc48/p97 requires a predicted ubiquitin-like domain of Cuz1/ZFAND1. In vivo, this interaction was strongly dependent on acute arsenite stress, suggesting that it is a part of the cellular arsenite stress response. Lack of Cuz1/ZFAND1 caused a defect in the clearance of arsenite induced SG clearance. ZFAND1 recruits both, the 26S proteasome and p97, to arsenite-induced SGs for their normal clearance. In the absence of ZFAND1, SGs lack the 26S proteasome and p97, accumulate defective ribosomal products and become aberrant. These aberrant SGs persist after arsenite removal and undergo degradation via autophagy. ZFAND1 depletion is epistatic to the expression of pathogenic mutant p97 with respect to SG clearance, suggesting that ZFAND1 function is relevant to the multisystem degenerative disorder, inclusion body myopathy associated with Paget's disease of bone and frontotemporal dementia and amyotrophic lateral sclerosis (IBMPFD/ALS).}, subject = {ubiquitin}, language = {en} }