@phdthesis{Hoepfner2012, author = {H{\"o}pfner, Philipp Alexander}, title = {Two-Dimensional Electron Systems at Surfaces — Spin-Orbit Interaction and Electronic Correlations}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78876}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This thesis addresses three different realizations of a truly two-dimensional electron system (2DES), established at the surface of elemental semiconductors, i.e., Pt/Si(111), Au/Ge(111), and Sn/Si(111). Characteristic features of atomic structures at surfaces have been studied using scanning tunneling microscopy and low energy electron diffraction with special emphasis on Pt deposition onto Si(111). Topographic inspection reveals that Pt atoms agglomerate as trimers, which represent the structural building block of phase-slip domains. Surprisingly, each trimer is rotated by 30° with respect to the substrate, which results in an unexpected symmetry breaking. In turn, this represents a unique example of a chiral structure at a semiconductor surface, and marks Pt/Si(111) as a promising candidate for catalytic processes at the atomic scale. Spin-orbit interactions (SOIs) play a significant role at surfaces involving heavy adatoms. As a result, a lift of the spin degeneracy in the electronic states, termed as Rashba effect, may be observed. A candidate system to exhibit such physics is Au/Ge(111). Its large hexagonal Fermi sheet is suggested to be spin-split by calculations within the density functional theory. Experimental clarification is obtained by exploiting the unique capabilities of three-dimensional spin detection in spin- and angle-resolved photoelectron spectroscopy. Besides verification of the spin splitting, the in-plane components of the spin are shown to possess helical character, while also a prominent rotation out of this plane is observed along straight sections of the Fermi surface. Surprisingly and for the first time in a 2DES, additional in-plane rotations of the spin are revealed close to high symmetry directions. This complex spin pattern must originate from crystalline anisotropies, and it is best described by augmenting the original Rashba model with higher order Dresselhaus-like SOI terms. The alternative use of group-IV adatoms at a significantly reduced coverage drastically changes the basic properties of a 2DES. Electron localization is strongly enhanced, and the ground state characteristics will be dominated by correlation effects then. Sn/Si(111) is scrutinized with this regard. It serves as an ideal realization of a triangular lattice, that inherently suffers from spin frustration. Consequently, long-range magnetic order is prohibited, and the ground state is assumed to be either a spiral antiferromagnetic (AFM) insulator or a spin liquid. Here, the single-particle spectral function is utilized as a fundamental quantity to address the complex interplay of geometric frustration and electronic correlations. In particular, this is achieved by combining the complementary strengths of ab initio local density approximation (LDA) calculations, state-of-the-art angle-resolved photoelectron spectroscopy, and the sophisticated many-body LDA+DCA. In this way, the evolution of a shadow band and a band backfolding incompatible with a spiral AFM order are unveiled. Moreover, beyond nearest-neighbor hopping processes are crucial here, and the spectral features must be attributed to a collinear AFM ground state, contrary to common expectation for a frustrated spin lattice.}, subject = {Halbleiteroberfl{\"a}che}, language = {en} } @phdthesis{Bentmann2012, author = {Bentmann, Hendrik}, title = {Spin-Bahn-Kopplung in Grenzschichten: Mikroskopische Zusammenh{\"a}nge und Strategien zur Manipulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76963}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Die vorliegende Arbeit befasst sich mit dem Einfluss der Spin-Bahn-Kopplung (SBK) auf die zweidimensionale elektronische Struktur von Festk{\"o}rperoberfl{\"a}chen und -grenzfl{\"a}chen. Aufgrund der strukturellen Inversionsasymmetrie kann die SBK in derartigen Systemen eine Spinaufspaltung der elektronischen Zust{\"a}nde herbeif{\"u}hren und eine charakteristische impulsabh{\"a}ngige Spinstruktur induzieren (Rashba-Effekt). Die Studien in dieser Arbeit sind zum einen darauf gerichtet, das physikalische Verst{\"a}ndnis der mikroskopischen Zusammenh{\"a}nge, die die Spinaufspaltung und die Spinorientierung elektronischer Zust{\"a}nde an Grenzfl{\"a}chen bestimmen, zu verbessern. Des Weiteren sollen M{\"o}glichkeiten zur Manipulation der SBK durch kontrollierte Variationen chemischer und struktureller Grenzfl{\"a}chenparameter erforscht werden. Als Modellsysteme f{\"u}r diese Fragestellungen dienen die isostrukturellen Oberfl{\"a}chenlegierungen BiCu2 und BiAg2, deren elektronische Struktur mittels winkelaufgel{\"o}ster Photoelektronenspektroskopie (ARPES) und spinaufgel{\"o}ster ARPES untersucht wird. Die Resultate der Experimente werden mithilfe von ab initio-Rechnungen und einfacheren Modellbetrachtungen interpretiert. Die Arbeit schließt mit einer ausblickenden Pr{\"a}sentation von Experimenten zu dem topologischen Isolator Bi2Se3(0001). Vergleichende ARPES-Messungen zu BiAg2/Ag(111) und BiCu2/Cu(111) zeigen, dass bereits geringe Unterschiede in der Grenzschichtmorphologie die Gr{\"o}ße der Spinaufspaltung in der elektronischen Struktur um ein Vielfaches ver{\"a}ndern k{\"o}nnen. Zudem belegen spinaufgel{\"o}ste Experimente eine invertierte Spinorientierung der elektronischen Zust{\"a}nde in BiCu2 im Vergleich mit dem Referenzsystem Au(111). Beide Resultate k{\"o}nnen durch eine theoretische Analyse des Potentialprofils und der elektronischen Ladungsverteilung senkrecht zu der Grenzfl{\"a}che in Kombination mit einfachen Modellbetrachtungen verstanden werden. Es stellt sich heraus, dass Asymmetrien in der Ladungsverteilung das direkte mikroskopische Bindeglied zwischen der Spinstruktur des elektronischen Systems und den strukturellen und chemischen Parametern der Grenzschicht bilden. Weitergehende ARPES-Experimente zeigen, dass die spinabh{\"a}ngige elektronische Struktur zudem signifikant durch die Symmetrie des Potentials parallel zu der Grenzfl{\"a}chenebene beeinflusst wird. Eine Manipulation der SBK wird in BiCu2 durch die Deposition von Adatomen erreicht. Hierdurch gelingt es, die Spinaufspaltung sowohl zu vergr{\"o}ßern (Na-Adsorption) als auch zu verringern (Xe-Adsorption). ARPES-Experimente an dem tern{\"a}ren Schichtsystem BiAg2/Ag/Au(111) belegen erstmalig eine Kopplung zwischen elektronischen B{\"a}ndern mit entgegengesetztem Spincharakter in einem zweidimensionalen System mit Spinaufspaltung (Interband-Spin-Bahn-Kopplung). Der zugrundeliegende Kopplungsmechanismus steht in bemerkenswerter Analogie zu den Auswirkungen der SBK auf die spinpolarisierte elektronische Struktur in ferromagnetischen Systemen. Variationen in der Schichtdicke des Ag-Substratfilms erlauben es, die St{\"a}rke der Interband-SBK zu manipulieren.}, subject = {Spin-Bahn-Wechselwirkung}, language = {de} }