@article{UenzelmannBentmannFiggemeieretal.2021, author = {{\"U}nzelmann, M. and Bentmann, H. and Figgemeier, T. and Eck, P. and Neu, J. N. and Geldiyev, B. and Diekmann, F. and Rohlf, S. and Buck, J. and Hoesch, M. and Kall{\"a}ne, M. and Rossnagel, K. and Thomale, R. and Siegrist, T. and Sangiovanni, G. and Di Sante, D. and Reinert, F.}, title = {Momentum-space signatures of Berry flux monopoles in the Weyl semimetal TaAs}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, number = {1}, doi = {10.1038/s41467-021-23727-3}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260719}, year = {2021}, abstract = {Since the early days of Dirac flux quantization, magnetic monopoles have been sought after as a potential corollary of quantized electric charge. As opposed to magnetic monopoles embedded into the theory of electromagnetism, Weyl semimetals (WSM) exhibit Berry flux monopoles in reciprocal parameter space. As a function of crystal momentum, such monopoles locate at the crossing point of spin-polarized bands forming the Weyl cone. Here, we report momentum-resolved spectroscopic signatures of Berry flux monopoles in TaAs as a paradigmatic WSM. We carried out angle-resolved photoelectron spectroscopy at bulk-sensitive soft X-ray energies (SX-ARPES) combined with photoelectron spin detection and circular dichroism. The experiments reveal large spin- and orbital-angular-momentum (SAM and OAM) polarizations of the Weyl-fermion states, resulting from the broken crystalline inversion symmetry in TaAs. Supported by first-principles calculations, our measurements image signatures of a topologically non-trivial winding of the OAM at the Weyl nodes and unveil a chirality-dependent SAM of the Weyl bands. Our results provide directly bulk-sensitive spectroscopic support for the non-trivial band topology in the WSM TaAs, promising to have profound implications for the study of quantum-geometric effects in solids. Weyl semimetals exhibit Berry flux monopoles in momentum-space, but direct experimental evidence has remained elusive. Here, the authors reveal topologically non-trivial winding of the orbital-angular-momentum at the Weyl nodes and a chirality-dependent spin-angular-momentum of the Weyl bands, as a direct signature of the Berry flux monopoles in TaAs.}, language = {en} } @phdthesis{Zipf2021, author = {Zipf, Matthias}, title = {Ber{\"u}hrungslose Temperaturmessung an Gasen und keramisch beschichteten Oberfl{\"a}chen bei hohen Temperaturen}, doi = {10.25972/OPUS-24024}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240248}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Station{\"a}re Gasturbinen k{\"o}nnen von großer Bedeutung f{\"u}r die Verlangsamung des Klima-wandels und bei der Bew{\"a}ltigung der Energiewende sein. F{\"u}r die Weiterentwicklung von Gasturbinen zu h{\"o}heren Betriebstemperaturen und damit einhergehend zu h{\"o}heren Wirkungs-graden werden ber{\"u}hrungslose Messverfahren zur Ermittlung der Oberfl{\"a}chentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase w{\"a}hrend des Be-triebs ben{\"o}tigt. Im Rahmen dieser Arbeit werden daher Methoden der ber{\"u}hrungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht. Die ber{\"u}hrungslose Messung der Oberfl{\"a}chentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberfl{\"a}cheneigenschaften im Wellenl{\"a}ngenbereich des mitt-leren Infrarots durchgef{\"u}hrt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines ad{\"a}quaten Strahlungsthermometers f{\"u}r diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Dr{\"u}cken in einer ei-gens hierf{\"u}r konstruierten Heißgas-Messzelle zun{\"a}chst Wellenl{\"a}ngenbereiche identifiziert, in welchen die geplanten Messungen m{\"o}glich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt. Weiterhin wurden im Rahmen dieser Arbeit zwei m{\"o}gliche Verfahren zur ber{\"u}hrungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabh{\"a}ngigkeit des spektralen Transmissionsgrades in den Randbereichen von ges{\"a}ttigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen f{\"u}r dieses Tempera-turmessverfahren durchgef{\"u}hrt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Dr{\"u}cken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K f{\"u}r das geplante Verfahren nutzbare Wellenl{\"a}ngenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden. Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur ber{\"u}hrungslosen Gastem-peraturmessung basiert auf der Temperaturabh{\"a}ngigkeit der Wellenl{\"a}ngenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Ph{\"a}nomen anhand von experimentell bestimmten hochaufgel{\"o}sten Transmissions-spektren von Kohlenstoffdioxid {\"u}berpr{\"u}ft. Weiterhin wurden m{\"o}gliche Wellenl{\"a}ngenbereiche identifiziert und hinsichtlich ihrer Eignung f{\"u}r das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdr{\"u}cken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet. Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-{\"u}ber hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden.}, subject = {Pyrometrie}, language = {de} } @article{WrońskiWyborskiMusiałetal.2021, author = {Wroński, Piotr Andrzej and Wyborski, Paweł and Musiał, Anna and Podemski, Paweł and Sęk, Grzegorz and H{\"o}fling, Sven and Jabeen, Fauzia}, title = {Metamorphic Buffer Layer Platform for 1550 nm Single-Photon Sources Grown by MBE on (100) GaAs Substrate}, series = {Materials}, volume = {14}, journal = {Materials}, number = {18}, issn = {1996-1944}, doi = {10.3390/ma14185221}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246145}, year = {2021}, abstract = {We demonstrate single-photon emission with a low probability of multiphoton events of 5\% in the C-band of telecommunication spectral range of standard silica fibers from molecular beam epitaxy grown (100)-GaAs-based structure with InAs quantum dots (QDs) on a metamorphic buffer layer. For this purpose, we propose and implement graded In content digitally alloyed InGaAs metamorphic buffer layer with maximal In content of 42\% and GaAs/AlAs distributed Bragg reflector underneath to enhance the extraction efficiency of QD emission. The fundamental limit of the emission rate for the investigated structures is 0.5 GHz based on an emission lifetime of 1.95 ns determined from time-resolved photoluminescence. We prove the relevance of a proposed technology platform for the realization of non-classical light sources in the context of fiber-based quantum communication applications.}, language = {en} } @article{WinterAndelovicKampfetal.2021, author = {Winter, Patrick M. and Andelovic, Kristina and Kampf, Thomas and Hansmann, Jan and Jakob, Peter Michael and Bauer, Wolfgang Rudolf and Zernecke, Alma and Herold, Volker}, title = {Simultaneous measurements of 3D wall shear stress and pulse wave velocity in the murine aortic arch}, series = {Journal of Cardiovascular Magnetic Resonance}, volume = {23}, journal = {Journal of Cardiovascular Magnetic Resonance}, number = {1}, doi = {10.1186/s12968-021-00725-4}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-259152}, pages = {34}, year = {2021}, abstract = {Purpose Wall shear stress (WSS) and pulse wave velocity (PWV) are important parameters to characterize blood flow in the vessel wall. Their quantification with flow-sensitive phase-contrast (PC) cardiovascular magnetic resonance (CMR), however, is time-consuming. Furthermore, the measurement of WSS requires high spatial resolution, whereas high temporal resolution is necessary for PWV measurements. For these reasons, PWV and WSS are challenging to measure in one CMR session, making it difficult to directly compare these parameters. By using a retrospective approach with a flexible reconstruction framework, we here aimed to simultaneously assess both PWV and WSS in the murine aortic arch from the same 4D flow measurement. Methods Flow was measured in the aortic arch of 18-week-old wildtype (n = 5) and ApoE\(^{-/-}\) mice (n = 5) with a self-navigated radial 4D-PC-CMR sequence. Retrospective data analysis was used to reconstruct the same dataset either at low spatial and high temporal resolution (PWV analysis) or high spatial and low temporal resolution (WSS analysis). To assess WSS, the aortic lumen was labeled by semi-automatically segmenting the reconstruction with high spatial resolution. WSS was determined from the spatial velocity gradients at the lumen surface. For calculation of the PWV, segmentation data was interpolated along the temporal dimension. Subsequently, PWV was quantified from the through-plane flow data using the multiple-points transit-time method. Reconstructions with varying frame rates and spatial resolutions were performed to investigate the influence of spatiotemporal resolution on the PWV and WSS quantification. Results 4D flow measurements were conducted in an acquisition time of only 35 min. Increased peak flow and peak WSS values and lower errors in PWV estimation were observed in the reconstructions with high temporal resolution. Aortic PWV was significantly increased in ApoE\(^{-/-}\) mice compared to the control group (1.7 ± 0.2 versus 2.6 ± 0.2 m/s, p < 0.001). Mean WSS magnitude values averaged over the aortic arch were (1.17 ± 0.07) N/m\(^2\) in wildtype mice and (1.27 ± 0.10) N/m\(^2\) in ApoE\(^{-/-}\) mice. Conclusion The post processing algorithm using the flexible reconstruction framework developed in this study permitted quantification of global PWV and 3D-WSS in a single acquisition. The possibility to assess both parameters in only 35 min will markedly improve the analyses and information content of in vivo measurements.}, language = {en} } @article{WeissenseelGottschollBoennighausenetal.2021, author = {Weissenseel, Sebastian and Gottscholl, Andreas and B{\"o}nnighausen, Rebecca and Dyakonov, Vladimir and Sperlich, Andreas}, title = {Long-lived spin-polarized intermolecular exciplex states in thermally activated delayed fluorescence-based organic light-emitting diodes}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {47}, doi = {10.1126/sciadv.abj9961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-265508}, year = {2021}, abstract = {Spin-spin interactions in organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) are pivotal because radiative recombination is largely determined by triplet-to-singlet conversion, also called reverse intersystem crossing (RISC). To explore the underlying process, we apply a spin-resonance spectral hole-burning technique to probe electroluminescence. We find that the triplet exciplex states in OLEDs are highly spin-polarized and show that these states can be decoupled from the heterogeneous nuclear environment as a source of spin dephasing and can even be coherently manipulated on a spin-spin relaxation time scale T-2* of 30 ns. Crucially, we obtain the characteristic triplet exciplex spin-lattice relaxation time T-1 in the range of 50 mu s, which far exceeds the RISC time. We conclude that slow spin relaxation rather than RISC is an efficiency-limiting step for intermolecular donor:acceptor systems. Finding TADF emitters with faster spin relaxation will benefit this type of TADF OLEDs.}, language = {en} } @phdthesis{Ullherr2021, author = {Ullherr, Maximilian}, title = {Optimization of Image Quality in High-Resolution X-Ray Imaging}, doi = {10.25972/OPUS-23117}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-231171}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The SNR spectra model and measurement method developed in this work yield reliable application-specific optima for image quality. This optimization can either be used to understand image quality, find out how to build a good imaging device or to (automatically) optimize the parameters of an existing setup. SNR spectra are here defined as a fraction of power spectra instead of a product of device properties. In combination with the newly developed measurement method for this definition, a close correspondence be- tween theory and measurement is achieved. Prior approaches suffer from a focus on theoretical definitions without fully considering if the defined quantities can be measured correctly. Additionally, discrepancies between assumptions and reality are common. The new approach is more reliable and complete, but also more difficult to evaluate and interpret. The signal power spectrum in the numerator of this fraction allows to model the image quality of different contrast mechanisms that are used in high-resolution x-ray imaging. Superposition equations derived for signal and noise enable understanding how polychromaticity (or superposition in general) affects the image quality. For the concept of detection energy weighting, a quantitative model for how it affects im- age quality was found. It was shown that—depending on sample properties—not detecting x-ray photons can increase image quality. For optimal computational energy weighting, more general formula for the optimal weight was found. In addition to the signal strength, it includes noise and modulation transfer. The novel method for measuring SNR spectra makes it possible to experimentally optimize image quality for different contrast mechanisms. This method uses one simple measurement to obtain a measure for im- age quality for a specific experimental setup. Comparable measurement methods typically require at least three more complex measurements, where the combination may then give a false result. SNR spectra measurements can be used to: • Test theoretical predictions about image quality optima. • Optimize image quality for a specific application. • Find new mechanisms to improve image quality. The last item reveals an important limitation of x- ray imaging in general: The achievable image quality is limited by the amount of x-ray photons interacting with the sample, not by the amount incident per detector area (see section 3.6). If the rest of the imaging geometry is fixed, moving the detector only changes the field of view, not the image quality. A practical consequence is that moving the sample closer to the x-ray source increases image quality quadratically. The results of a SNR spectra measurement represent the image quality only on a relative scale, but very reliable. This relative scale is sufficient for an optimization problem. Physical effects are often already clearly identifiable by the shape of the functional relationship between input parameter and measurement result. SNR spectra as a quantity are not well suited for standardization, but instead allow a reliable optimization. Not satisfying the requirements of standardization allows to use methods which have other advantages. In this case, the SNR spectra method describes the image quality for a specific application. Consequently, additional physical effects can be taken into account. Additionally, the measurement method can be used to automate the setting of optimal machine parameters. The newly proposed image quality measure detection effectiveness is better suited for standardization or setup comparison. This quantity is very similar to measures from other publications (e.g. CNR(u)), when interpreted monochromatically. Polychromatic effects can only be modeled fully by the DE(u). The measurement processes of both are different and the DE(u) is fundamentally more reliable. Information technology and digital data processing make it possible to determine SNR spectra from a mea- sured image series. This measurement process was designed from the ground up to use these technical capabilities. Often, information technology is only used to make processes easier and more exact. Here, the whole measurement method would be infeasible without it. As this example shows, using the capabilities of digital data processing much more extensively opens many new possibilities. Information technology can be used to extract information from measured data in ways that analog data processing simply cannot. The original purpose of the SNR spectra optimization theory and methods was to optimize high resolution x-ray imaging only. During the course of this work, it has become clear that some of the results of this work affect x-ray imaging in general. In the future, these results could be applied to MI and NDT x-ray imaging. Future work on the same topic will also need to consider the relationship between SNR spectra or DE(u) and sufficient image quality.This question is about the minimal image quality required for a specific measurement task.}, subject = {Bildqualit{\"a}t}, language = {en} } @article{TufarelliFriedrichGrossetal.2021, author = {Tufarelli, Tommaso and Friedrich, Daniel and Groß, Heiko and Hamm, Joachim and Hess, Ortwin and Hecht, Bert}, title = {Single quantum emitter Dicke enhancement}, series = {Physical Review Research}, volume = {3}, journal = {Physical Review Research}, doi = {10.1103/PhysRevResearch.3.033103}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-261459}, year = {2021}, abstract = {Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a "linearized" (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with a boosted coupling constant of order √N. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case N=2. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection of single-photon nonlinearities at ambient conditions.}, language = {en} } @phdthesis{Swirski2021, author = {Swirski, Thorben}, title = {Studies on the Effect of Gas Contaminations in Micromegas Detectors and Production of Micromegas Detectors for the New Small Wheel of the ATLAS Detector}, doi = {10.25972/OPUS-24640}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246405}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This work consists of two parts. On the one hand, it describes simulation and measurement of the effect of contaminations of the detector gas on the performance of particle detectors, with special focus on Micromegas detectors. On the other hand, it includes the setup of a production site for the finalization of drift panels which are going to be used in the ATLAS NSW. The first part augments these two parts to give an introduction into the theoretical foundations of gaseous particle detectors.}, subject = {Gasionisationsdetektor}, language = {en} } @phdthesis{Sochor2021, author = {Sochor, Benedikt}, title = {Aggregation behavior of Pluronic P123 in bulk solution and under confinement at elevated temperatures near its cloud point}, doi = {10.25972/OPUS-24607}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-246070}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis aims to investigate the form-phase diagram of aqueous solutions of the triblock copolymer Pluronic P123 focusing on its high-temperature phases. P123 is based on polyethylene as well as polypropylene oxide blocks and shows a variety of di erent temperaturedependent micelle morphologies or even lyotropic liquid crystal phases in aqueous solutions. Besides the already well-studied spherical aggregates at intermediate temperatures, the size and internal structure of both worm-like and lamellar micelles, which appear near the cloud point, is determined using light, neutron and X-ray scattering. By combining the results of time-resolved dynamic light as well as small-angle neutron and X-ray scattering experiments, the underlying structural changes and kinetics of the sphere-to-worm transition were studied supporting the random fusion process, which is proposed in literature. For temperatures near the cloud point, it was observed that aqueous P123 solutions below the critical crystallization concentration gelate after several hours, which is linked to the presence and structure of polymeric surface layers on the sample container walls as shown by neutron re ectometry measurements. Using a hierarchical model for the lamellar micelles including their periodicity as well as domain and overall size, it is possible to unify the existing results in literature and propose a direct connection between the near-surface and bulk properties of P123 solutions at temperatures near the cloud point.}, subject = {Weiche Materie}, language = {en} } @phdthesis{Schummer2021, author = {Schummer, Bernhard}, title = {Stabilisierung von CdS Nanopartikeln mittels Pluronic P123}, doi = {10.25972/OPUS-23844}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238443}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Ziel dieser Arbeit war die Stabilisierung von Cadmiumsulfid CdS mit Pluronic P123, einem Polymer. CdS ist ein Halbleiter, der zum Beispiel in der Photonik und bei optischen Anwendungen eingesetzt wird und ist deshalb {\"a}ußerst interessant, da seine Bandl{\"u}cke als Nanopartikel verschiebbar ist. F{\"u}r die Photovoltaik ist es ein attraktives Material, da es im sichtbaren Licht absorbiert und durch die Bandl{\"u}ckenverschiebung effektiver absorbieren kann. Dies ist unter dem Namen Quantum Size Effekt bekannt. Als Feststoff ist CdS f{\"u}r einen solchen Anwendungsbereich weniger geeignet, zumal der Effekt der Bandl{\"u}ckenverschiebung dort nicht auftritt. Wissenschaftler bem{\"u}hen sich deshalb CdS als Nanopartikeln zu stabilisieren, weil CdS in w{\"a}ssrigen L{\"o}sungen ein stark aggregierendes System, also stark hydrophob ist. Es wurden zwei Kriterien f{\"u}r die erfolgreiche Stabilisierung von CdS festgelegt. Zum einen muss das Cds homogen im Medium verteilt sein und darf nicht agglomerieren. Zum anderen, m{\"u}ssen die CdS Nanopartikel kleiner als 100 A sein. In meiner Arbeit habe ich solche Partikel hergestellt und stabilisiert, d.h. verhindert, dass die Partikel weiterwachsen und gleichzeitig ihre Bandl{\"u}cke verschoben wird. Die Herausforderung liegt nicht in der Herstellung, aber in der L{\"o}sung von CdS im Tr{\"a}gerstoff, da CdS in den meisten Fl{\"u}ssigkeiten nicht l{\"o}slich ist und ausf{\"a}llt. Die Stabilisierung in w{\"a}ssrigen L{\"o}sungen wurde das erste Mal durch Herrn Prof. Dr. Rempel mit Ethylendiamintetraessigs{\"a}ure EDTA erfolgreich durchgef{\"u}hrt. Mit EDTA k{\"o}nnen jedoch nur sehr kleine Konzentrationen stabilisiert werden. Zudem k{\"o}nnen Parameter wie Gr{\"o}ße und Geschwindigkeit der Reaktion beim Stabilisieren der CdS-Nanopartikel nicht angepasst oder beeinflusst werden. Dieses Problem ist dem, vieler medizinischer Wirkstoffe sehr {\"a}hnlich, die in hohen Konzentrationen verabreicht werden sollen, aber nicht oder nur schwer in Wasser l{\"o}slich sind (Bsp. Kurkumin). Ein vielversprechender L{\"o}sungsweg ist dort, die Wirkstoffe in große Tr{\"a}gerpartikel (sog. Mizellen) einzuschleusen, die ihrerseits gut l{\"o}slich sind. In meiner Arbeit habe ich genau diesen Ansatz f{\"u}r CdS verfolgt. Als Tr{\"a}gerpartikel/Mizelle wurde das bekannte Copolymer Pluronic P123 verwendet. Aus dieser Pluronic Produktreihe wird P123 gew{\"a}hlt, da es die gr{\"o}ßte Masse bei gleichzeitig h{\"o}chstem Anteil von Polypropylenoxid PPO im Vergleich zur Gesamtkettenl{\"a}nge hat. P123 ist ein tern{\"a}res Polyether oder Dreiblockkopolymer und wird von BASAF industriell produziert. Es besteht aus drei B{\"o}cken, dem mittlere Block Polypropylenoxid PPO und den beiden {\"a}ußeren Bl{\"o}cken Polyethylenoxid PEO. Der Buchstabe P steht f{\"u}r past{\"o}s, die ersten beiden Ziffern in P123 mit 300 multipliziert ergeben das molare Gewicht und die letzte Ziffer mit 10 multipliziert entspricht dem prozentualen Gewichtsanteil PEO. Die Bildung von Mizellen aus den P123 Molek{\"u}len kann bewusst {\"u}ber geringe Temperatur{\"a}nderungen gesteuert werden. Bei ungef{\"a}hr Raumtemperatur liegen Mizellen vor, die sich bei h{\"o}heren Temperaturen von sph{\"a}rischen in wurmartige Mizellen umwandeln. Oberhalb einer Konzentration von 30 Gewichtsprozent wtp bilden die Mizellen außerdem einen Fl{\"u}ssigkristall. Ich habe in meiner Arbeit zun{\"a}chst P123 mit Hilfe von R{\"o}ntgenstreuung untersucht. Anders als andere Methoden gibt R{\"o}ntgenstreuung direkten Aufschluss {\"u}ber die Morphologie der Stoffe. R{\"o}ntgenstreuung kann die Mischung von P123 mit CdS abbilden und l{\"a}sst darauf schließen, ob das Ziel erreicht werden konnte, stabile CdS Nanopartikel in P123 zu binden. F{\"u}r die Stabilisierung der Nanopartikel ist es zun{\"a}chst notwendig die richtigen Temperaturen f{\"u}r die Ausgangsl{\"o}sungen und gemischten L{\"o}sungen zu finden. Dazu muss P123 viel genauer untersucht werden, als der momentane Kenntnisstand in der Literatur. Zu diesem Zweck als auch f{\"u}r die Analyse des stabilisierten CdS habe ich ein neues Instrument am LRM entwickelt, sowie eine temperierbare Probenumgebung f{\"u}r Fl{\"u}ssigkeiten f{\"u}rs Vakuum, um morphologische Eigenschaften aus Streuamplituden und -winkeln zu entschl{\"u}sseln. Diese R{\"o}ntgenstreuanlage wurde konzipiert und gebaut, um auch im Labor P123 in kleinen Konzentrationen messen zu k{\"o}nnen. R{\"o}ntgenkleinwinkelstreuung eignet sich besonders als Messmethode, da die Probe mit einer hohen statistischen Relevanz in Fl{\"u}ssigkeit und in verschiedenen Konzentrationen analysiert werden kann. F{\"u}r die Konzentrationen 5, 10 und 30 wtp konnte das temperaturabh{\"a}ngige Verhalten von P123 pr{\"a}zise mit R{\"o}ntgenkleinwinkelstreuung SAXS gemessen und dargestellt werden. F{\"u}r 5 wtp konnten die Gr{\"o}ßen der Unimere und Mizellen bestimmt werden. Trotz der nicht vorhandenen Absolutkalibration f{\"u}r diese Konzentration konnten dank des neu eingef{\"u}hrten Parameters kappa eine Dehydrierung der Mizellen mit steigender Temperatur abgesch{\"a}tzt, sowie eine Hysterese zwischen dem Heizen und Abk{\"u}hlen festgestellt werden. F{\"u}r die Konzentration von 10 wtp wurden kleinere Temperaturschritte gew{\"a}hlt und die Messungen zus{\"a}tzlich absolut kalibriert. Es wurden die Gr{\"o}ßen und Streul{\"a}ngendichten SLD der Unimere und Mizellen pr{\"a}zise bestimmt und ein vollst{\"a}ndiges Form-Phasendiagramm erstellt. Auch f{\"u}r diese Konzentration konnte eine Hysterese eindeutig an der Gr{\"o}ße, SLD und am Parameter kappa gezeigt werden, sowie eine Dehydrierung des Mizellenkerns. Dies beweist, dass der Parameter kappa geeignet ist, um bei nicht absolut kalibrierten Messungen, Aussagen {\"u}ber die Hydrierung und Hysterese komplexer Kern-H{\"u}lle Modelle zu machen. F{\"u}r die Konzentration von 30 wtp konnte zwischen 23°C und 35°C eine FCC Struktur nachgewiesen werden. Dabei vergr{\"o}ßert sich die Gitterkonstante der FCC Struktur von 260 A auf 289 A in Abh{\"a}ngigkeit der Temperatur. Durch das Mischen zweier L{\"o}sungen, zum einen CdCl2 und 30 wtp P123 und zum anderen Na2S und 30 wtp P123, konnte CdS erfolgreich stabilisiert werden. Mit einer Kamera wurde die Gelbf{\"a}rbung der L{\"o}sung, und somit die Bildung des CdS, in Abh{\"a}ngigkeit der Zeit untersucht. Es konnte festgestellt werden, dass das Bilden der CdS Nanopartikel je nach Konzentration und Temperierprogramm zwischen 30 und 300 Sekunden dauert und einer logistischen Wachstumsfunktion folgt. H{\"o}here Konzentrationen CdS bewirken einen schnelleren Anstieg der Wachstumsfunktion. Mittels UV-Vis Spektroskopie konnte gezeigt werden, dass die Bandl{\"u}cke von CdS mit steigender Konzentration konstant bei 2,52 eV bleibt. Eine solche Verschiebung der Bandl{\"u}cke von ungef{\"a}hr 0,05 eV im Vergleich zum Festk{\"o}rper, deutet auf einen CdS Partikeldurchmesser von 80A hin. Mit SAXS konnte gezeigt werden, dass sich die fl{\"u}ssigkristalline Struktur des P123 bei zwei verschiedenen Konzentrationen CdS, von 0,005 und 0,1 M, nicht {\"a}ndert. Das CdS wird zwischen den Mizellen, also durch die Bildung des Fl{\"u}ssigkristalls, und im Kern der Mizelle aufgrund seiner Hydrophobizit{\"a}t stabilisiert. Die Anfangs definierten Kriterien f{\"u}r eine erfolgreiche Stabilisierung wurden erf{\"u}llt. P123 ist ein hervorragend geeignetes Polymer, um hydrophobes CdS, sowohl durch die Bildung eines Fl{\"u}ssigkristalls, als auch im Kern der Mizelle zu stabilisieren.}, subject = {R{\"o}ntgen-Kleinwinkelstreuung}, language = {de} }