@phdthesis{Mueck2004, author = {M{\"u}ck, Alexander}, title = {The standard model in 5D : theoretical consistency and experimental constraints}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10591}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {The four-dimensional Minkowski space is known to be a good description for space-time down to the length scales probed by the latest high-energy experiments. Nevertheless, there is the viable and exciting possibility that additional space-time structure will be observable in the next generation of collider experiments. Hence, we discuss different extensions of the standard model of particle physics with an extra dimension at the TeV-scale. We assume that some of the gauge and Higgs bosons propagate in one additional spatial dimension, while matter fields are confined to a four-dimensional subspace, the usual Minkowski space. After compactification on an S^1/Z_2 orbifold, an effective four-dimensional theory is obtained where towers of Kaluza-Klein (KK) modes, in addition to the standard model fields, reflect the higher-dimensional structure of space-time. The models are elaborated from the 5D Lagrangian to the Feynman rules of the KK modes. Special attention is paid to an appropriate generalization of the Rxi-gauge and the interplay between spontaneous symmetry breaking and compactification. Confronting the observables in 5D standard model extensions with combined precision measurements at the Z-boson pole and the latest data from LEP2, we constrain the possible size R of the extra dimension experimentally. A multi-parameter fit of all relevant input parameters leads to bounds for the compactification scale M=1/R in the range 4-6 TeV at the 2 sigma confidence level and shows how the mass of the Higgs boson is correlated with the size of an extra dimension. Considering a future linear e+e- collider, we outline the discovery potential for an extra dimension using the proposed TESLA specifications as an example. As a consistency check for the various models, we analyze Ward identities and the gauge boson equivalence theorem in W-pair production and find that gauge symmetry is preserved by a complex interplay of the Kaluza-Klein modes. In this context, we point out the close analogy between the traditional Higgs mechanism and mass generation for gauge bosons via compactification. Beyond the tree-level, the higher-dimensional models studied extensively in the literature and in the first part of this thesis have to be extended. We modify the models by the inclusion of brane kinetic terms which are required as counter terms. Again, we derive the corresponding 4D theory for the KK towers paying special attention to gauge fixing and spontaneous symmetry breaking. Finally, the phenomenological implications of the new brane kinetic terms are investigated in detail.}, subject = {Standardmodell }, language = {en} }