@phdthesis{Murso2004, author = {Murso, Alexander}, title = {Electronic response of phosphorus and nitrogen based ligands on metal coordination}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-10397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Phosphorus and nitrogen containing ligands were examined in terms of their coordination flexibility. Combining these donor atoms of different hardness or softness in one molecule leads to the design of polyfunctional, ambidentate ligand systems with unique properties, because the different features associated with each donor atom confer unique reactivity to their metal complexes. The phosphane Ph2P(CH2Py) (Py = 2-pyridyl) is a very versatile starting material for the preparation of highly flexible, hemilabile, ambident ligands. C-deprotonation of this phosphane yields a Janus head, responding very sensitive to the Lewis-acidity and the charge concentration of the coordinated metal, adapting its coordination mode to the electronic requirements of the cation (electronic differentiation). Thus, bidentate (P,N)-chelating, tridentate (P,N)-chelating together with C-coordination and (C,N)-coordination is observed in the different metal complexes discussed in this work. Additionally, the oxidized derivative of the abovementioned phosphane, the iminophosphorane Ph2P(CH2Py)(NSiMe3), is discussed. The C-deprotonated anion of this iminophosphorane prefers (N,N')-side arm- rather than C-coordination. The electron deficient pyridyl substituent at the C-atom leads to charge delocalization in the anionic [Ph2P(CHPy)(NSiMe3]-moiety. The bonding parameters of the iminophosphorane and all its derivatives, together with the almost fixed 15N-NMR resonances for the imino nitrogen atoms in these compounds prove that hypervalent central phosphorus is not required to describe the bonding situation in iminophosphoranes.}, subject = {Phosphane}, language = {en} }