@phdthesis{Wiese2015, author = {Wiese, Katrin Evelyn}, title = {Sensing supraphysiological levels of MYC : mechanisms of MIZ1-dependent MYC-induced Apoptosis in Mammary Epithelial Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-132532}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Deregulated MYC expression contributes to cellular transformation as well as progression and maintenance of human tumours. Interestingly, in the absence of additional genetic alterations, potentially oncogenic levels of MYC sensitise cells to a variety of apoptotic stimuli. Hence, MYC-induced apoptosis has long been recognised as a major barrier against cancer development. However, it is largely unknown how cells discriminate physiological from supraphysiological levels of MYC in order to execute an appropriate biological response. The experiments described in this thesis demonstrate that induction of apoptosis in mammary epithelial cells depends on the repressive actions of MYC/MIZ1 complexes. Analysis of gene expression profiles and ChIP-sequencing experiments reveals that high levels of MYC are required to invade low-affinity binding sites and repress target genes of the serum response factor SRF. These genes are involved in cytoskeletal dynamics as well as cell adhesion processes and are likely needed to transmit survival signals to the AKT kinase. Restoration of SRF activity rescues MIZ1- dependent gene repression and increases AKT phosphorylation and downstream function. Collectively, these results indicate that association with MIZ1 leads to an expansion of MYC's transcriptional response that allows sensing of oncogenic levels, which points towards a tumour-suppressive role for the MYC/MIZ1 complex in epithelial cells.}, subject = {Myc}, language = {en} } @phdthesis{Luetkenhaus2010, author = {L{\"u}tkenhaus, Katharina}, title = {Tumour development in Raf-driven cancer mouse models}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48332}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Metastasis is the cause of death in 90\% of cancer-related deaths in men. Melanoma and Non-Small-Cell Lung Cancer (NSCLC) are both tumour types with poor prognosis, lacking appropriate therapeutic possibilities, not least because of their high rate of metastasis. Thus understanding the process of metastasis might unravel therapeutic targets for developing further therapeutic strategies. The generation of a transgenic mouse model expressing B-RafV600E in melanocytes, a mutation that is found in about 60\% of all melanoma, would result in an ideal tool to study melanoma progression and metastasis. In this work, a doxycycline-inducible system was constructed for expression of B-RafV600E and transgenic animals were generated, but the expression system has to be improved, since this strategy didn't give rise to any viable, transgene carrying mice. Furthermore, since it was shown in the work of others that the metastatic behavior of tumour cell lines could be reversed by an embryonic microenvironment and the influence of a tumourigenic microenvironment on melanocytes lead to the acquisition of tumour cell-like characteristics, the question arose, whether B-Raf is as important in melanocyte development as it is in melanoma progression. In this work, the embryonal melanocyte development in B-Raf-deficient and wildtype mouse embryos was examined and there were no differences observed in the localization and number of neural crest stem cells as well as in the localization of the dopachrome-tautomerase positive melanoblasts in the embryos and in cultured neural tube explants. The expression of oncogenic C-Raf in lung epithelial cells has yielded a model for NSCLC giving rise to adenomas lacking spontaneous progression or metastasis. The co-expression of c-Myc in the same cells accelerates the tumour development and gives rise to liver and lymphnode metastases. The expression of c-Myc alone in lung epithelial cells leads to late tumour development with incomplete penetrance. A mutation screen in this work resulted in the observation that a secondary mutation in KRas or LKB1 is necessary for tumour formation in the c-Myc single transgenic animals and suggested metastasis as an early event, since the corresponding metastases of the mutation-prone primary lung tumours were negative for the observed mutations. Furthermore, in this work it was shown that the expression of chicken c-Myc in a non-metastatic NSCLC cell line leads to metastatic clones, showing that c-Myc is sufficient to induce metastasis. Additionally a panel of metastasis markers was identified, that might serve as diagnostic markers in the future.}, subject = {Raf }, language = {en} } @phdthesis{Krenz2023, author = {Krenz, Bastian}, title = {The immune-evasive potential of MYC in pancreatic ductal adenocarcinoma}, doi = {10.25972/OPUS-32590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Pancreatic ductal adenocarcinoma (PDAC) is predominantly driven by mutations in KRAS and TP53. However, PDAC tumors display deregulated levels of MYC and are a paradigm example for MYC-driven and -addicted tumors. For many years MYC was described as a transcription factor that regulates a pleiotropic number of genes to drive proliferation. Recent work sheds a different light on MYC biology. First, changes in gene expression that come along with the activation of MYC are mild and MYC seems to act more as a factor that reduces stress and increases resilience towards challenges during transcription. Second, MYC is a strong driver of immune evasion in different entities. In this study we depleted MYC in murine PDAC cells and revealed the immune dependent regression of tumors in an orthotope transplant model, as well as the activation of the innate immune system using global expression analysis, immunoblotting and fCLIP. These experiments revealed that endogenous double-stranded RNA is binding as a viral mimicry to Toll-like receptor 3, causing activation of TBK1 and downstream activation of a proimmunogenic transcription program. The regression of tumors upon depletion of MYC is dependent on this pathway since the knockout of TBK1 prevents regression of tumors after depletion of MYC. We can summarize this study in three main findings: First, the dominant and most important function of MYC in tumors is not to drive proliferation but to promote immune evasion and prevent immune-dependent regression of tumors. Second, cells monitor defects or delay in splicing and RNA processing and activate the immune system to clear cells that face problems with co-transcriptional processing. Third, MYC suppresses the activation of the cell-intrinsic innate immune system and shields highly proliferating cells from the recognition by the immune system. To translate this into a therapeutically approach, we replaced the shRNA mediated depletion of MYC by treatment with cardiac glycosides. Upon treatment with cardiac glycosides tumor cells reduce uptake of nutrients, causing a downregulation of MYC translation, inhibition of proliferation, glycolysis and lactate secretion. Lactate is a major reason for immune evasion in solid tumors since it dampens, amongst others, cytotoxic T cells and promotes regulatory T cells. Treatment of mice with cardiac glycosides causes a complete and immune-dependent remission of PDAC tumors in vivo, pointing out that cardiac glycosides have strong proimmunogenic, anti-cancer effects. More detailed analyses will be needed to dissect the full mechanism how cardiac glycosides act on MYC translation and immune evasion in PDAC tumors.}, subject = {Bauchspeicheldr{\"u}senkrebs}, language = {en} } @phdthesis{Jaenicke2015, author = {J{\"a}nicke, Laura Annika}, title = {Regulation of MYC Activity by the Ubiquitin-Proteasome System}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-123339}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The oncogenic MYC protein is a transcriptional regulator of multiple cellular processes and is aberrantly activated in a wide range of human cancers. MYC is an unstable protein rapidly degraded by the ubiquitin-proteasome system. Ubiquitination can both positively and negatively affect MYC function, but its direct contribution to MYC-mediated transactivation remained unresolved. To investigate how ubiquitination regulates MYC activity, a non-ubiquitinatable MYC mutant was characterized, in which all lysines are replaced by arginines (K-less MYC). The absence of ubiquitin-acceptor sites in K-less MYC resulted in a more stable protein, but did not affect cellular localization, chromatin-association or the ability to interact with known MYC interaction partners. Unlike the wild type protein, K-less MYC was unable to promote proliferation in immortalized mammary epithelial cells. RNA- and ChIP-Sequencing analyses revealed that, although K-less MYC was present at MYC-regulated promoters, it was a weaker transcriptional regulator. The use of K-less MYC, a proteasomal inhibitor and reconstitution of individual lysine residues showed that proteasomal turnover of MYC is required for MYC target gene induction. ChIP-Sequencing of RNA polymerase II (RNAPII) revealed that MYC ubiquitination is dispensable for RNAPII recruitment and transcriptional initiation but is specifically required to promote transcriptional elongation. Turnover of MYC is required to stimulate histone acetylation at MYC-regulated promoters, which depends on a highly conserved region in MYC (MYC box II), thereby enabling the recruitment of BRD4 and P-TEFb and the release of elongating RNAPII from target promoters. Inhibition of MYC turnover enabled the identification of an intermediate in MYC-mediated transactivation, the association of MYC with the PAF complex, a positive elongation factor, suggesting that MYC acts as an assembly factor transferring elongation factors onto RNAPII. The interaction between MYC and the PAF complex occurs via a second highly conserved region in MYC's amino terminus, MYC box I. Collectively, the data of this work show that turnover of MYC coordinates histone acetylation with recruitment and transfer of elongation factors on RNAPII involving the cooperation of MYC box I and MYC box II.}, subject = {Myc}, language = {en} } @phdthesis{Jung2016, author = {Jung, Lisa Anna}, title = {Targeting MYC Function as a Strategy for Tumor Therapy}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146993}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {A large fraction of human tumors exhibits aberrant expression of the oncoprotein MYC. As a transcription factor regulating various cellular processes, MYC is also crucially involved in normal development. Direct targeting of MYC has been a major challenge for molecular cancer drug discovery. The proof of principle that its inhibition is nevertheless feasible came from in vivo studies using a dominant-negative allele of MYC termed OmoMYC. Systemic expression of OmoMYC triggered long-term tumor regression with mild and fully reversible side effects on normal tissues. In this study, OmoMYC's mode of action was investigated combining methods of structural biology and functional genomics to elucidate how it is able to preferentially affect oncogenic functions of MYC. The crystal structure of the OmoMYC homodimer, both in the free and the E-box-bound state, was determined, which revealed that OmoMYC forms a stable homodimer, and as such, recognizes DNA via the same base-specific DNA contacts as the MYC/MAX heterodimer. OmoMYC binds DNA with an equally high affinity as MYC/MAX complexes. RNA-sequencing showed that OmoMYC blunts both MYC-dependent transcriptional activation and repression. Genome-wide DNA-binding studies using chromatin immunoprecipitation followed by high-throughput sequencing revealed that OmoMYC competes with MYC/MAX complexes on chromatin, thereby reducing their occupancy at consensus DNA binding sites. The most prominent decrease in MYC binding was seen at low-affinity promoters, which were invaded by MYC at oncogenic levels. Strikingly, gene set enrichment analyses using OmoMYC-regulated genes enabled the identification of tumor subgroups with high MYC levels in multiple tumor entities. Together with a targeted shRNA screen, this identified novel targets for the eradication of MYC-driven tumors, such as ATAD3A, BOP1, and ADRM1. In summary, the findings suggest that OmoMYC specifically inhibits tumor cell growth by attenuating the expression of rate-limiting proteins in cellular processes that respond to elevated levels of MYC protein using a DNA-competitive mechanism. This opens up novel strategies to target oncogenic MYC functions for tumor therapy.}, subject = {Myc}, language = {en} } @phdthesis{Hovhanyan2014, author = {Hovhanyan, Anna}, title = {Functional analyses of Mushroom body miniature (Mbm) in growth and proliferation of neural progenitor cells in the central brain of Drosophila melanogaster}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-91303}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Zellwachstum und Zellteilung stellen zwei miteinander verkn{\"u}pfte Prozesse dar, die dennoch grunds{\"a}tzlich voneinander zu unterscheiden sind. Die Wiederaufnahme der Proliferation von neuralen Vorl{\"a}uferzellen (Neuroblasten) im Zentralhirn von Drosophila nach der sp{\"a}t-embryonalen Ruhephase erfordert zun{\"a}chst Zellwachstum. Der Erhalt der regul{\"a}ren Zellgr{\"o}ße ist eine wichtige Voraussetzung f{\"u}r die kontinuierliche Proliferation der Neuroblasten {\"u}ber die gesamte larvale Entwicklungsphase. Neben extrinsischen Ern{\"a}hrungssignalen ist f{\"u}r das Zellwachstum eine kontinuierliche Versorgung mit funktionellen Ribosomen notwendig, damit die Proteinsynthese aufrechterhalten werden kann. Mutationen im mushroom body miniature (mbm) Gen wurden {\"u}ber einen genetischen Screen nach strukturellen Gehirnmutanten identifiziert. Der Schwerpunkt dieser Arbeit lag in der funktionellen Charakterisierung des Mbm Proteins als neues nukleol{\"a}res Protein und damit seiner m{\"o}glichen Beteiligung in der Ribosomenbiogenese. Der Vergleich der relativen Expressionslevel von Mbm und anderen nuklearen Proteinen in verschiedenen Zelltypen zeigte eine verst{\"a}rkte Expression von Mbm in der fibrill{\"a}ren Komponente des Nukleolus von Neuroblasten. Diese Beobachtung legte die Vermutung nahe, dass in Neuroblasten neben generell ben{\"o}tigten Faktoren der Ribosomenbiogenese auch Zelltyp-spezifische Faktoren existieren. Mutationen in mbm verursachen Proliferationsdefekte von Neuroblasten, wirken sich jedoch nicht auf deren Zellpolarit{\"a}t, die Orientierung der mitotischen Spindel oder die Asymmetrie der Zellteilung aus. Stattdessen wurde eine Reduktion der Zellgr{\"o}ße beobachtet, was im Einklang mit einer Beeintr{\"a}chtigung der Ribosomenbiogenese steht. Insbesondere f{\"u}hrt der Verlust der Mbm Funktion zu einer Retention der kleinen ribosomalen Untereinheit im Nukleolus, was eine verminderte Proteinsynthese zur Folge hat. Interessanterweise wurden St{\"o}rungen der Ribosomenbiogenese nur in den Neuroblasten beobachtet. Zudem ist Mbm offensichtlich nicht erforderlich, um Wachstum oder die Proliferation von Zellen der Fl{\"u}gelimginalscheibe und S2-Zellen zu steuern, was wiederum daf{\"u}r spricht, dass Mbm eine Neuroblasten-spezifische Funktion erf{\"u}llt. Dar{\"u}ber hinaus wurden die transkriptionelle Regulation des mbm-Gens und die funktionelle Bedeutung von posttranslationalen Modifikationen analysiert. Mbm Transkription wird von dMyc reguliert. Ein gemeinsames Merkmal von dMyc Zielgenen ist das Vorhandensein einer konservierten „E-Box"-Sequenz in deren Promotorregionen. In der Umgebung der mbm-Transkriptionsstartstelle befinden sich zwei „E-Box"-Motive. Mit Hilfe von Genreporteranalysen konnte nachgewiesen werden, dass nur eine von ihnen die dMyc-abh{\"a}ngige Transkription vermittelt. Die dMyc-abh{\"a}ngige Expression von Mbm konnte auch in Neuroblasten verifiziert werden. Auf posttranslationaler Ebene wird Mbm durch die Proteinkinase CK2 phosphoryliert. In der C-terminalen H{\"a}lfte des Mbm Proteins wurden in zwei Clustern mit einer Abfolge von sauren Aminos{\"a}uren sechs Serin- und Threoninreste als CK2- Phosphorylierungsstellen identifiziert. Eine Mutationsanalyse dieser Stellen best{\"a}tigte deren Bedeutung f{\"u}r die Mbm Funktion in vivo. Weiterhin ergaben sich Evidenzen, dass die Mbm-Lokalisierung durch die CK2-vermittelte Phosphorylierung gesteuert wird. Obwohl die genaue molekulare Funktion von Mbm in der Ribosomenbiogenese noch im Unklaren ist, unterstreichen die Ergebnisse dieser Studie die besondere Rolle von Mbm in der Ribosomenbiogenese von Neuroblasten um Zellwachstum und Proliferation zu regulieren.}, subject = {Taufliege}, language = {en} } @phdthesis{Hofstetter2022, author = {Hofstetter, Julia Eva Ines}, title = {MYC shapes the composition of RNA polymerase II through direct recruitment of transcription elongation factors}, doi = {10.25972/OPUS-24035}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240358}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The transcription factor MYC is a onco-protein, found to be deregulated in many human cancers. High MYC levels correlate with an aggressive tumor outcome and poor survival rates. Despite MYC being discovered as an oncogene already in the 1970s, how MYC regulates transcription of its target genes, which are involved in cellular growth and proliferation, is not fully understood yet. In this study, the question how MYC influences factors interacting with the RNA polymerase II ensuring productive transcription of its target genes was addressed using quantitative mass spectrometry. By comparing the interactome of RNA polymerase II under varying MYC levels, several potential factors involved in transcriptional elongation were identified. Furthermore, the question which of those factors interact with MYC was answered by employing quantitative mass spectrometry of MYC itself. Thereby, the direct interaction of MYC with the transcription elongation factor SPT5, a subunit of the DRB-sensitivity inducing factor, was discovered and analyzed in greater detail. SPT5 was shown to be recruited to chromatin by MYC. In addition, the interaction site of MYC on SPT5 was narrowed down to its evolutionary conserved NGN-domain, which is the known binding site for SPT4, the earlier characterized second subunit of the DRB-sensitivity inducing factor. This finding suggests a model in which MYC and SPT4 compete for binding the NGN-domain of SPT5. Investigations of the SPT5-interacting region on MYC showed binding of SPT5 to MYC's N-terminus including MYC-boxes 0, I and II. In order to analyze proteins interacting specifically with the N-terminal region of MYC, a truncated MYC-mutant was used for quantitative mass spectrometric analysis uncovering reduced binding for several proteins including the well-known interactor TRRAP and TRRAP-associated complexes. Summarized, ...}, subject = {Transkription }, language = {en} } @phdthesis{Herter2015, author = {Herter, Eva Kristine}, title = {Characterization of direct Myc target genes in Drosophila melanogaster and Investigating the interaction of Chinmo and Myc}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-122272}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {The correct regulation of cell growth and proliferation is essential during normal animal development. Myc proteins function as transcription factors, being involved in the con-trol of many growth- and proliferation-associated genes and deregulation of Myc is one of the main driving factors of human malignancies. The first part of this thesis focuses on the identification of directly regulated Myc target genes in Drosophila melanogaster, by combining ChIPseq and RNAseq approaches. The analysis results in a core set of Myc target genes of less than 300 genes which are mainly involved in ribosome biogenesis. Among these genes we identify a novel class of Myc targets, the non-coding small nucleolar RNAs (snoRNAs). In vivo studies show that loss of snoRNAs not only impairs growth during normal development, but that overexpression of several snoRNAs can also enhance tumor development in a neu-ronal tumor model. Together the data show that Myc acts as a master regulator of ribo-some biogenesis and that Myc's transforming effects in tumor development are at least partially mediated by the snoRNAs. In the second part of the thesis, the interaction of Myc and the Zf-protein Chinmo is described. Co-immunoprecipitations of the two proteins performed under endogenous and exogenous conditions show that they interact physically and that neither the two Zf-domains nor the BTB/POZ-domain of Chinmo are important for this interaction. Fur-thermore ChIP experiments and Myc dependent luciferase assays show that Chinmo and Myc share common target genes, and that Chinmo is presumably also involved in their regulation. While the exact way of how Myc and Chinmo genetically interact with each other still has to be investigated, we show that their interaction is important in a tumor model. Overexpression of the tumor-suppressors Ras and Chinmo leads to tu-mor formation in Drosophila larvae, which is drastically impaired upon loss of Myc.}, subject = {Myc}, language = {en} } @phdthesis{Gerlach2018, author = {Gerlach, Jennifer}, title = {Influence of Myc-interacting proteins on transcription and development}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154917}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The transcription factor Myc interacts with several co-factors to regulate growth and proliferationand thereby enables normal animal development. Deregulation of Myc is associated witha wide range of human tumors. Myc binds to DNA together with its dimerization partner Max, preferentially to canonical E-box motifs, but this sequence-specific interaction is probably not sufficient for Myc's binding to target genes. In this work, the PAF1 complex was characterized as a novel co-factor of Myc in Drosophila melanogaster. All components of the complex are required for Myc's recruitment to chromatin, but the subunit Atu has the strongest effect on Myc's binding to target genes through ist direct physical interaction with Myc. Unexpectedly, the impact of Atu depletion on the Expression of Myc target genes was weak compared to its effect on Myc binding. However, the influence of Atu becomes more prominent in situations of elevated Myc levels in vivo . Mycrepressed as well as Myc-activated targets are affected, consistent with the notion that Myc recruitment is impaired. An independent set of analyses revealed that Myc retains substantial activity even in the complete absence of Max. The overexpression of Myc in Max0 mutants specifically blocks their pupariation without affecting their survival, which raised the possibility that Myc might affect ecdysone biosynthesis. This connection was studied in the second part of this Thesis which showed that Myc inhibits the expression of ecdysteroidogenic genes and thereby the production of ecdysone. Myc most likely affects the signaling pathways (PTTH and insulin signaling) upstream of the PG, the organ where ecdysone is produced. By combining existing ChIPseq, RNAseq and electronic annotation data, we identified five potential Maxindependent Myc targets and provided experimental data that they might be involved in Myc's effect on Max mutant animals. Together our data confirm that some Myc functions are Max-independent and they raise the possibility that this effect might play a role during replication.}, subject = {Taufliege}, language = {en} } @phdthesis{Dwertmann2012, author = {Dwertmann, Anne}, title = {Impact of the Tumor Suppressor Arf on Miz1 and Sumoylation of Myc and Miz1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-71876}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Upon oncogenic stress, the tumor suppressor Arf can induce irreversible cell cycle arrest or apoptosis, depending on the oncogenic insult. In this study, it could be shown that Arf interacts with Myc and the Myc-associated zinc-finger protein Miz1 to facilitate repression of genes involved in cell adhesion. Formation of a DNA-binding Arf/Myc/Miz1 complex disrupts interaction of Miz1 with its coactivator nucleophosmin and induces local heterochromatinisation, causing cells to lose attachment and undergo anoikis. The assembly of the complex relies on Myc, which might explain why high Myc levels trigger apoptosis and not cell cycle arrest in the Arf response. This mechanism could play an important role in eliminating cells harboring an oncogenic mutation. Arf furthermore induces sumoylation of Miz1 at a specific lysine by repressing the desumoylating enzyme Senp3. A sumoylation-deficient mutant of Miz1 however does not show phenotypic differences under the chosen experimental conditions. Myc can also be modified by Sumo by multisumoylation at many different lysines, which is unaffected by Arf. The exact mechanism and effect of this modification however stays unsolved.}, subject = {Apoptosis}, language = {en} }