@phdthesis{Hahn2022, author = {Hahn, Lukas}, title = {Novel Thermoresponsive Hydrogels Based on Poly(2-oxazoline)s and Poly(2-oxazine)s and their Application in Biofabrication}, doi = {10.25972/OPUS-27129}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-271299}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {In this work, the influence of aromatic structures on drug encapsulation, self-assembly and hydrogel formation was investigated. The physically crosslinked gelling systems were characterized and optimized for the use in biofabrication and applied in initial (bio)printing experiments. Chapter I: The cytocompatible (first in vitro and in vivo studies) amphiphile PMeOx-b-PBzOx-b- PMeOx (A-PBzOx-A) was used for the solubilization of PTX, schizandrin A (SchA), curcumin (CUR), niraparib and HS-173. Chapter II: Compared to the polymers A-PPheOx-A, A-PBzOx-A and A-PBzOzi-A, only the polymer A-PPheOzi-A showed a reversible temperature- and concentration-dependent inverse thermogelation, which is accompanied by a morphology change from long wormlike micelles in the gel to small spherical micelles in solution. The worm formation results from novel interactions between the hydrophilic and hydrophobic aromatic polymer blocks. Changes in the hydrophilic block significantly alter the gel system. Rheological properties can be optimized by concentration and temperature, which is why the hydrogel was used to significantly improve the printability and stability of Alg in a blend system. Chapter III: By extending the side chain of the aromatic hydrophobic block, the inverse thermogelling polymer A-poly(2-phenethyl-2-oxazoline)-A (A-PPhenEtOx-A) is obtained. Rapid gelation upon cooling is achieved by inter-correlating spherical micelles. Based on ideal rheological properties, first cytocompatible bioprinting experiments were performed in combination with Alg. The polymers A- poly(2-benzhydryl-2-oxazoline)-A (A-PBhOx-A) and A-poly(2-benzhydryl-2-oxazine) (A-PBhOzi-A) are characterized by two aromatic benzyl units per hydrophobic repeating unit. Only the polymer A- PBhOzi-A exhibited inverse thermogelling behavior. Merging micelles could be observed by electron microscopy. The system was rheologically characterized and discussed with respect to an application in 3D printing. Chapter IV: The thermogelling POx/POzi system, in particular the block copolymer PMeOx-b- PnPrOzi, was used in different applications in the field of biofabrication. The introduction of maleimide and furan units along the hydrophilic polymer part ensured additional stabilization by Diels-Alder crosslinking after the printing process.}, subject = {Polymer Science}, language = {en} }