@phdthesis{SoutoCarneiro2000, author = {Souto-Carneiro, Maria Margarida}, title = {Molecular and functional analyses of human synovial B-lymphocytes in rheumatoid arthritis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2308}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {B-cells of the rheumatoid synovial tissue are a constant part of and, in some histopathological subtypes, the dominant population of the inflammatory infiltrate, located in the region of tissue destruction. The pattern of B-cell distribution and the relationship to the corresponding antigen-presenting cells (follicular dendritic reticulum cells: FDCs) show a great variety. B-cells may exhibit (i) a follicular organization forming secondary follicles; (ii) follicle-like patterns with irregularly formed FDC networks, and (iii) a diffuse pattern of isolated FDCs. Molecular analysis of immunoglobulin VH and VL genes from human synovial B-cell hybridomas and synovial tissue demonstrates somatic mutations due to antigen activation. The FDC formations in the synovial tissue may therefore serve as an environment for B-cell maturation, which is involved in the generation of autoantibodies. An autoantibody is defined as "pathogenic" if it fulfills the Witebsky-Rose-Koch criteria for classical autoimmune diseases: definition of the autoantibody; induction of the disease by transfer of the autoantibody; and isolation of the autoantibody from the disease-specific lesion. B-cells from rheumatoid synovial tissue show specificity for FcIgG, type II collagen, COMP, sDNA, tetanus toxoid, mitochondrial antigens (M2), filaggrin and bacterial HSPs. The contributions of these antigens to the pathogenesis of RA are still hypothetical. A possible contribution could derive from crossreactivity and epitope mimicry: due to crossreaction, an antibody directed originally against a foreign infectious agent could react with epitopes from articular tissues, perpetuating the local inflammatory process. The characteristic distribution pattern, the localisation within the area of tissue destruction, the hypermutated IgVH and IgVL genes, and their exclusive function to recognize conformation-dependent antigens suggest a central role for B-cells in the inflammatory process of rheumatoid arthritis. Therefore, the analysis of synovial B-cell hybridomas and experimental expression of synovial IgVH and IgVL genes will help to characterise the antigens responsible for the pathogenesis of rheumatoid arthritis. In the present study 55 IgVH genes amplified from 3 different anatomical regions of a RA patient were analysed adding further information on synovial B-cell maturation and recirculation in RA. This analysis demonstrated somatically mutated IgVh genes in all different regions with amino acid deletions and mixed IgVh molecules, suggesting the existence of a novel pathway to generate (auto)antibody specificities. The comparison of amino acid sequences of amplified genes belonging to the VH1 family (with predominantly the same germline counterpart) exhibited a strong homology, indicating an apparently conserved mutational pattern. This suggests that the number of antigens activating B-cells in the different locations is restricted. The most striking result was the finding of clonally related sequences in different anatomical regions indicating a recirculation of activated B-cells between the different affected joints. Also in the present study a synovial B-cell hybridoma was analyzed for its specific recognition of cartilage antigens. A heptameric peptide of cartilage oligomeric protein (COMP) could be defined as the target structure. The IgVH-gene (IgHV4-59*01) of the IgG2l hybridoma has somatically mutated genes with high R/S values in the CDR regions (9:2). Thus, indicating that this hybridoma originates from a synovial B-cell which has been antigen activated/selected for its affinity. To analyse the presence of the clonotypic IgHV4-59*01 sequences in other cases of RA and osteoarthritis (OA) synovitis, primers specific for the CDR3 rearrangement of this hybridoma were used. The clonotypic and clone related sequences (98 per cent ± 1 per cent homology) could only be detected in synovitis of RA cases but not in OA cases indicating that this B-cell is specific to RA synovitis. The identified heptameric peptide of COMP was used in a peptide ELISA to analyse whether there is a specific binding in RA serum samples. Serum samples (IgG) from RA patients (n=22) showed a significant higher efficiency to the COMP heptamer than the OA sera (n=24) and the age matched healthy controls (n=20) (for both p<1x10-4, Students t-test). The specificity of this B-cell hybridoma may therefore be defined as RA specific. Since COMP is restricted to cartilage and tendons which are organs specifically affected in RA this COMP specific autoantibody represents the first organ specific autoantibody in RA. The IgG2 COMP specific autoantibody with somatically mutated IgVH genes is different from germline encoded, antigen clearing IgM autoantibodies and may therefore be directly involved as an "arthritogenic autoantibody" in cartilage and tendons destruction by complement activation.}, subject = {Rheumatoide Arthritis}, language = {en} } @phdthesis{Rouziere2004, author = {Rouzi{\`e}re, Anne-Sophie}, title = {MODULATION OF THE B-CELL REPERTOIRE IN RHEUMATOID ARTHRITIS BY TRANSIENT B-CELL DEPLETION}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-9290}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Although the role of B-cells in autoimmunity is not completely understood, their importance in the pathogenesis of autoimmune diseases has been more appreciated in the past few years. It is now well known that they have roles in addition to (auto) antibody production and are involved by different mechanisms in the regulation of T-cell mediated autoimmune disorders. The evolution of an autoimmune disease is a dynamic process, which takes a course of years during which complex immunoregulatory mechanisms shape the immune repertoire until the development of clinical disease. During this course, the B-cell repertoire itself is influenced and a change in the distribution of immunoglobulin heavy and light chain genes can be observed. B-cell depletive therapies have beneficial effects in patients suffering from rheumatoid arthritis (RA), highlighting also the central role of B-cells in the pathogenesis of this disease. Nevertheless, the mechanism of action is unclear. It has been hypothesised that B-cell depletion is able to reset deviated humoral immunity. Therefore we wanted to investigate if transient B-cell depletion results in changes of the peripheral B-cell receptor repertoire. To address this issue, expressed immunoglobulin genes of two patients suffering from RA were analysed; one patient for the heavy chain repertoire (patient H), one patient for the light chain repertoire (patient L). Both patients were treated with rituximab, an anti-CD20 monoclonal antibody that selectively depletes peripheral CD20+ B-cells for several months. The B-cell repertoire was studied before therapy and at the earliest time point after B-cell regeneration in both patients. A longer follow-up (up to 27 months) was performed in patient H who was treated a second time with rituximab after 17 months. Heavy chain gene analysis was carried out by nested-PCR on bulk DNA from peripheral B-cells using family-specific primers, followed by subcloning and sequencing. During the study, patient H received two courses of antibody treatment. B-cell depletion lasted 7 and 10 months, respectively and each time was accompanied by a clinical improvement. Anti-CD20 therapy induced two types of changes in this patient. During the early phase of B-cell regeneration, we noticed the presence of an expanded and recirculating population of highly mutated B-cells. These cells expressed very different immunoglobulin VH genes compared before therapy. They were class-switched and could be detected for a short period only. The long-term changes were more subtle. Nevertheless, characteristic changes in the VH2 family, as well as in specific mini-genes like VH3-23, 4-34 or 1-69 were noticed. Some of these genes have already been reported to be biased in autoimmune diseases. Also in autoimmune diseases, in particular in RA, clonal B-cells have been frequently found in the repertoire. B-cell depletion with anti-CD20 antibody resulted in a long term loss of clonal B-cells in patient H. Thus, temporary B-cell depletion induced significant changes in the heavy chain repertoire. For the light chain gene analysis, the repertoire changes were analysed separately for naive (CD27-) and memory (CD27+) B-cells. Individual CD19+ B-cells were sorted into CD27- and CD27+ cells and single cell RT-PCR was performed, followed by direct sequencing. During the study, patient L received one course of antibody treatment. B-cell depletion lasted 10 months and the light chain repertoire was studied before and after therapy. Before therapy, some differences in the distribution of VL and JL genes were observed between naive and memory B-cells. In particular, the predominant usage of Jk-proximal Vk genes by the CD27- naive B-cells indicated that the receptor editing was less frequent in this population compared to memory cells. In VlJl rearrangements also, some evidence for decreased receptor editing was noticed, with the overrepresentation of the Jl2/3 gene segments. The CDR3 regions of naive and memory cells showed different characteristics: the activity of the terminal deoxynucleotidyl transferase and exonuclease in Vl(5') side was greater in memory cells. Also in the light chain repertoire, we observed some changes induced by the B-cell depletive therapy. There was a tendency of a less frequent usage of Jk-proximal Vk genes in the naive population. Some Vl genes, previously described in autoimmune diseases and connected to rheumatoid factor activity, such as 3p, 3r, 1g, were not found after therapy. The different characteristics of the CDR3 regions of VlJl rearrangements were not observed anymore. Very significantly, the ratio Vk to Vl was shifted toward a greater usage of Vk genes in the naive population after therapy. Taken together, these results indicate that therapeutic transient B-cell depletion by anti-CD20 antibody therapy modulates the immunoglobulin gene repertoire in the two RA patients studied. Measurable changes were observed in the heavy chain as well as in the light chain repertoire, which may be relevant to the course of the disease. This also supports the notion that the composition of the B-cell repertoire is influenced by the disease and that B-cell depletion can reset biases that are typically found in autoimmune diseases.}, subject = {Rheumatoide Arthritis}, language = {en} }