@phdthesis{Baumann2008, author = {Baumann, Markus}, title = {Newton's Method for Path-Following Problems on Manifolds}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28099}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Many optimization problems for a smooth cost function f on a manifold M can be solved by determining the zeros of a vector field F; such as e.g. the gradient F of the cost function f. If F does not depend on additional parameters, numerous zero-finding techniques are available for this purpose. It is a natural generalization however, to consider time-dependent optimization problems that require the computation of time-varying zeros of time-dependent vector fields F(x,t). Such parametric optimization problems arise in many fields of applied mathematics, in particular path-following problems in robotics, recursive eigenvalue and singular value estimation in signal processing, as well as numerical linear algebra and inverse eigenvalue problems in control theory. In the literature, there are already some tracking algorithms for these tasks, but these do not always adequately respect the manifold structure. Hence, available tracking results can often be improved by implementing methods working directly on the manifold. Thus, intrinsic methods are of interests that evolve during the entire computation on the manifold. It is the task of this thesis, to develop such intrinsic zero finding methods. The main results of this thesis are as follows: - A new class of continuous and discrete tracking algorithms is proposed for computing zeros of time-varying vector fields on Riemannian manifolds. This was achieved by studying the newly introduced time-varying Newton Flow and the time-varying Newton Algorithm on Riemannian manifolds. - Convergence analysis is performed on arbitrary Riemannian manifolds. - Concretization of these results on submanifolds, including for a new class of algorithms via local parameterizations. - More specific results in Euclidean space are obtained by considering inexact and underdetermined time-varying Newton Flows. - Illustration of these newly introduced algorithms by examining time-varying tracking tasks in three application areas: Subspace analysis, matrix decompositions (in particular EVD and SVD) and computer vision.}, subject = {Dynamische Optimierung}, language = {en} }