@phdthesis{Simann2015, author = {Simann, Meike}, title = {Aufkl{\"a}rung der Effekte von Fibroblasten-Wachstumsfaktor 1 und 2 auf die Adipogenese und Osteogenese von prim{\"a}ren humanen Knochenmark-Stroma-Zellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119322}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Regulating and reverting the adipo-osteogenic lineage decision of trabecular human bone marrow stromal cells (hBMSCs) represents a promising approach for osteoporosis therapy and prevention. Fibroblast growth factor 1 (FGF1) and its subfamily member FGF2 were scored as lead candidates to exercise control over lineage switching processes (conversion) in favor of osteogenesis previously. However, their impact on differentiation events is controversially discussed in literature. Hence, the present study aimed to investigate the effects of these FGFs on the adipogenic and osteogenic differentiation and conversion of primary hBMSCs. Moreover, involved downstream signaling mechanisms should be elucidated and, finally, the results should be evaluated with regard to the possible therapeutic approach. This study clearly revealed that culture in the presence of FGF1 strongly prevented the adipogenic differentiation of hBMSCs as well as the adipogenic conversion of pre-differentiated osteoblastic cells. Lipid droplet formation was completely inhibited by a concentration of 25 ng/µL. Meanwhile, the expression of genetic markers for adipogenic initiation, peroxisome proliferator-activated receptor gamma 2 (PPARg2) and CCAAT/enhancer binding protein alpha (C/EBPa), as well as subsequent adipocyte maturation, fatty acid binding protein 4 (FABP4) and lipoprotein lipase (LPL), were significantly downregulated. Yet, the genetic markers of osteogenic commitment and differentiation were not upregulated during adipogenic differentiation and conversion under FGF supplementation, not supporting an event of osteogenic lineage switching. Moreover, when examining the effects on the osteogenic differentiation of hBMSCs and the osteogenic conversion of pre-differentiated adipocytic cells, culture in the presence of FGF1 markedly decreased extracellular matrix (ECM) mineralization. Additionally, the gene expression of the osteogenic marker alkaline phosphatase (ALP) was significantly reduced and ALP enzyme activity was decreased. Furthermore, genetic markers of osteogenic commitment, like the master regulator runt-related transcription factor 2 (RUNX2) and bone morphogenetic protein 4 (BMP4), as well as markers of osteogenic differentiation and ECM formation, like collagen 1 A1 (COL1A1) and integrin-binding sialoprotein (IBSP), were downregulated. In contrast, genes known to inhibit ECM mineralization, like ANKH inorganic pyrophosphate transport regulator (ANKH) and osteopontin (OPN), were upregulated. ANKH inhibition revealed that its transcriptional elevation was not crucial for the reduced matrix mineralization, perhaps due to decreased expression of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) that likely annulled ANKH upregulation. Like FGF1, also the culture in the presence of FGF2 displayed a marked anti-adipogenic and anti-osteogenic effect. The FGF receptor 1 (FGFR1) was found to be crucial for mediating the described FGF effects in adipogenic and osteogenic differentiation and conversion. Yet, adipogenic conversion displayed a lower involvement of the FGFR1. For adipogenic differentiation and osteogenic differentiation/conversion, downstream signal transduction involved the extracellular signal-regulated kinases 1 and 2 (ERK1/2) and the mitogen-activated protein kinase (MAPK)/ERK kinases 1 and 2 (MEK1/2), probably via the phosphorylation of FGFR docking protein FGFR substrate 2a (FRS2a) and its effector Ras/MAPK. The c-Jun N-terminal kinase (JNK), p38-MAPK, and protein kinase C (PKC) were not crucial for the signal transduction, yet were in part responsible for the rate of adipogenic and/or osteogenic differentiation itself, in line with current literature. Taken together, to the best of our knowledge, our study was the first to describe the strong impact of FGF1 and FGF2 on both the adipogenic and osteogenic differentiation and conversion processes of primary hBMSCs in parallel. It clearly revealed that although both FGFs were not able to promote the differentiation and lineage switching towards the osteogenic fate, they strongly prevented adipogenic differentiation and lineage switching, which seem to be elevated during osteoporosis. Our findings indicate that FGF1 and FGF2 entrapped hBMSCs in a pre-committed state. In conclusion, these agents could be applied to potently prevent unwanted adipogenesis in vitro. Moreover, our results might aid in unraveling a pharmacological control point to eliminate the increased adipogenic differentiation and conversion as potential cause of adipose tissue accumulation and decreased osteoblastogenesis in bone marrow during aging and especially in osteoporosis.}, subject = {Mesenchymzelle}, language = {en} } @phdthesis{Schilling2007, author = {Schilling, Tatjana}, title = {Transdifferentiation of Human Mesenchymal Stem Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-24299}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {With ageing, the loss of bone mass correlates with the expansion of adipose tissue in human bone marrow thus facilitating bone-related diseases like osteopenia and osteoporosis. The molecular mechanisms underlying these events are still largely unknown. Reduced osteogenesis and concurrently enhanced adipogenesis might not only occur due to the impairment of conventional osteogenic differentiation originating from mesenchymal stem cells (MSCs). Additionally, transdifferentiation of (pre-)osteoblasts into adipocytes could contribute to the fatty conversion. Therefore, the aim of the present study was to prove the existence of transdifferentiation between the adipogenic and osteogenic lineage and to elucidate molecular mechanisms underlying this phenomenon. At first, a cell culture system of primary human MSCs was established that allowed for differentiation into the adipogenic and osteogenic lineage and proved that the MSC-derived adipocytes and pre-osteoblasts were capable of transdifferentiation (reprogramming) from one into the other lineage. Thereby, lineage-specific markers were completely reversed after reprogramming of pre-osteoblasts into adipocytes. The osteogenic transdifferentiation of adipocytes was slightly less efficient since osteogenic markers were present but the adipogenic ones partly persisted. Hence, plasticity also reached into the differentiation pathways of both lineages and the better performance of adipogenic reprogramming further supported the assumption of its occurrence in vivo. The subsequent examination of gene expression changes by microarray analyses that compared transdifferentiated cells with conventionally differentiated ones revealed high numbers of reproducibly regulated genes shortly after initiation of adipogenic and osteogenic reprogramming. Thereof, many genes were correlated with metabolism, transcription, and signal transduction as FGF, IGF, and Wnt signalling, but only few of the established adipogenesis- and none of the osteogenesis-associated marker genes were detected within 24 h after initiation of transdifferentiation. To find possible key control factors of transdifferentiation amongst the huge amount of regulated genes, a novel bioinformatic scoring scheme was developed that ranked genes due to their potential relevance for reprogramming. Besides the reproducibility and level of their regulation, also the possible reciprocity between the adipogenic and osteogenic transdifferentiation pathway was taken into account. Fibroblast growth factor 1 (FGF1) that ranked as one of the leading candidates to govern reprogramming was proven to inhibit adipogenic differentiation as well as adipogenic transdifferentiation in our cell culture system. Further examination of the FGF signalling pathway and other highly ranked genes could help to better understand the age-related fatty degeneration at the molecular level and therefore provide target molecules for therapeutic modulation of the plasticity of both lineages in order to inhibit adipogenic degeneration and to enhance osteogenesis.}, subject = {Zelldifferenzierung}, language = {en} } @phdthesis{Ehebauer2020, author = {Ehebauer, Franziska}, title = {Regulation of Nicotinamide N-methyltransferase Expression in Adipocytes}, doi = {10.25972/OPUS-21764}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-217645}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Nicotinamide N-methyltransferase (NNMT) is a new regulator of energy homeostasis. Its expression is increased in models of obesity and diabetes. An enhanced NNMT level is also caused by an adipose tissue-specific knockout of glucose transporter type 4 (GLUT4) in mice, whereas the overexpression of this glucose transporter reduced the NNMT expression. Furthermore, the knockdown of the enzyme prevents mice from diet-induced obesity (DIO) and the recently developed small molecule inhibitors for NNMT reverses the DIO. These previous findings demonstrated the exclusive role of NNMT in adipose tissue and further make it to a promising target in obesity treatment. However, the regulation mechanism of this methyltransferase is not yet clarified. The first part of the thesis focus on the investigation whether pro-inflammatory signals are responsible for the enhanced NNMT expression in obese adipose tissue because a hallmark of this tissue is a low-level chronic inflammation. Indeed, the NNMT mRNA in our study was elevated in obese patients compared with the control group, whereas the GLUT4 mRNA expression does not differ between lean and obese humans. To analyze whether pro inflammatory signals, like interleukin (IL 6) and tumor necrosis factor α (TNF-α), regulate NNMT expression 3T3-L1 adipocytes were treated with these cytokines. However, IL 6, TNF α, and leptin, which is an alternative activator of the JAK/STAT pathway, did not affect the NNMT protein or mRNA level in differentiated 3T3-L1 adipocytes. The mRNA and protein levels were measured by quantitative polymerase chain reaction (qPCR) and western blotting. In the second part of this study, 3T3-L1 adipocytes were cultivated with varying glucose concentrations to show whether NNMT expression depends on glucose availability. Further studies with activators and inhibitors of AMP-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) signaling pathways were used to elucidate the regulation mechanism of the enzyme. The glucose deprivation of differentiated 3T3-L1 adipocytes led to a 2-fold increase in NNMT expression. This effect was confirmed by the inhibition of the glucose transports with phloretin as well as the inhibition of glycolysis with 2-deoxyglucose (2-DG). AMPK serves as an intracellular energy sensor and the pharmacological activation of it enhanced the NNMT expression. This increase was also caused by the inhibition of mTOR. Conversely, the activation of mTOR using MHY1485 prevented the effect of glucose deprivation on NNMT. Furthermore, the NNMT up-regulation was also blocked by the different autophagy inhibitors. Taken together, NNMT plays a critical role in autophagy in adipocytes, because an inhibition of this process prevented the augmented NNMT expression during glucose starvation. Moreover, the effect on NNMT protein and mRNA level depends on AMPK and mTOR. However, pro-inflammatory signals did not affect the expression. Further in vivo studies have to clarify whether AMPK activation and mTOR inhibition as well as autophagy are responsible for the increased NNMT levels in obese adipose tissue. In future this methyltransferase emerges as an awesome therapeutic target for obesity.}, subject = {Fettzelle}, language = {en} }