@phdthesis{Wagenpfahl2013, author = {Wagenpfahl, Alexander Johannes}, title = {Numerical simulations on limitations and optimization strategies of organic solar cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-90119}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Continuously increasing energy prices have considerably influenced the cost of living over the last decades. At the same time increasingly extreme weather conditions, drought-filled summers as well as autumns and winters with heavier rainfall and worsening storms have been reported. These are possibly the harbingers of the expected approaching global climate change. Considering the depletability of fossil energy sources and a rising distrust in nuclear power, investigations into new and innovative renewable energy sources are necessary to prepare for the coming future. In addition to wind, hydro and biomass technologies, electricity generated by the direct conversion of incident sunlight is one of the most promising approaches. Since the syntheses and detailed studies of organic semiconducting polymers and fullerenes were intensified, a new kind of solar cell fabrication became conceivable. In addition to classical vacuum deposition techniques, organic cells were now also able to be processed from a solution, even on flexible substrates like plastic, fabric or paper. An organic solar cell represents a complex electrical device influenced for instance by light interference for charge carrier generation. Also charge carrier recombination and transport mechanisms are important to its performance. In accordance to Coulomb interaction, this results in a specific distribution of the charge carriers and the electric field, which finally yield the measured current-voltage characteristics. Changes of certain parameters result in a complex response in the investigated device due to interactions between the physical processes. Consequently, it is necessary to find a way to generally predict the response of such a device to temperature changes for example. In this work, a numerical, one-dimensional simulation has been developed based on the drift-diffusion equations for electrons, holes and excitons. The generation and recombination rates of the single species are defined according to a detailed balance approach. The Coulomb interaction between the single charge carriers is considered through the Poisson equation. An analytically non-solvable differential equation system is consequently set-up. With numerical approaches, valid solutions describing the macroscopic processes in organic solar cells can be found. An additional optical simulation is used to determine the spatially resolved charge carrier generation rates due to interference. Concepts regarding organic semiconductors and solar cells are introduced in the first part of this work. All chapters are based on previous ones and logically outline the basic physics, device architectures, models of charge carrier generation and recombination as well as the mathematic and numerical approaches to obtain valid simulation results. In the second part, the simulation is used to elaborate issues of current interest in organic solar cell research. This includes a basic understanding of how the open circuit voltage is generated and which processes limit its value. S-shaped current-voltage characteristics are explained assigning finite surface recombination velocities at metal electrodes piling-up local space charges. The power conversion efficiency is identified as a trade-off between charge carrier accumulation and charge extraction. This leads to an optimum of the power conversion efficiency at moderate to high charge carrier mobilities. Differences between recombination rates determined by different interpretations of identical experimental results are assigned to a spatially inhomogeneous recombination, relevant for almost all low mobility semiconductor devices.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Kiermasch2020, author = {Kiermasch, David}, title = {Charge Carrier Recombination Dynamics in Hybrid Metal Halide Perovskite Solar Cells}, doi = {10.25972/OPUS-20862}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208629}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses.}, subject = {Solarzelle}, language = {en} } @phdthesis{Foertig2013, author = {F{\"o}rtig, Alexander}, title = {Recombination Dynamics in Organic Solar Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-83895}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Neben herk{\"o}mmlichen, konventionellen anorganischen Solarzellen — haupts{\"a}chlich auf Silizium basierend — ist die Organische Photovoltaik (OPV) auf dem besten Wege in naher Zukunft eine kosteng{\"u}nstige, umweltfreundliche, komplement{\"a}re Technolgie darzustellen. Die Produktionskosten, die Lebenszeit der Solarzellen sowie deren Wirkungsgrad m{\"u}ssen dabei weiter optimiert werden, um einen Markteintritt der OPV zu erm{\"o}glichen. Die vorliegende Arbeit befasst sich mit der Effizienz organischer Solarzellen und deren Limitierung durch die Rekombination von Ladungstr{\"a}gern. Um funktionsf{\"a}hige Zellen zu untersuchen, werden zeitaufgel{\"o}ste Experimente wie die Messung der transienten Photospannung (TPV), des transienten Photostroms (TPC), die Ladungsextraktion (CE) sowie die time delayed collection field (TDCF) Methode angewandt. Untersucht werden sowohl fl{\"u}ssig prozessierte als auch aufgedampfte Proben, unterschiedliche Materialzusammensetzungen und verschiedene Probengeometrien. Das Standardmaterialsystem der OPV, P3HT:PC61BM, wird bei verschiedenen emperaturen und Beleuchtungsst{\"a}rken auf die Lebenszeit und Dichte der photogenerierten Ladungstr{\"a}ger {\"u}berpr{\"u}ft. F{\"u}r den Fall spannungsunabh{\"a}ngiger Generation von Ladungstr{\"a}gern zeigt sich die Anwendbarkeit der Shockley-Gleichung auf organische Solarzellen. Des Weiteren wird ein konsistentes Modell erl{\"a}utert, welches den Idealtit{\"a}tsfaktor direkt mit der Rekombination von freien mit gefangenen, exponentiell verteilten Ladungstr{\"a}gern verkn{\"u}pft. Ein Ansatz, bekannt unter der Bezeichung j=V Rekonstruktion, erm{\"o}glicht es, den leistungslimitierenden Verlustmechanismus in unbehandelten und thermisch geheizten P3HT:PC61BM Solarzellen zu identifizieren. Dieses Verf ahren, welches TPV, CE und TDCF Messungen beinhaltet, wird auf Proben basierend auf dem neuartigen, low-band gap Polymer PTB7 in Verbindung mit dem Fulleren PC71BM ausgeweitet. W{\"a}hrend in der Zelle hergestellt aus reinem Chlorbenzol betr{\"a}chtliche geminale wie nichtgeminale Verluste zu beobachten sind, erleichtert die Zugabe eines L{\"o}sungsmittelzusatzes die Polaronenpaartrennung, was zu einer starken Reduktion geminaler Verluste f{\"u}hrt. In einer Kooperation mit dem IMEC Institut in Leuven, werden abschließend die beiden bedeutensten Probenarchitekturen organischer Solarzellen, die planare und die Misch{\"u}bergang Struktur, jeweils basierend auf CuPC und C60, bez{\"u}glich nichtgeminaler Rekombination und Ladungstr{\"a}gerverteilung miteinander verglichen. Neben den beiden experimentellen Techniken um TPV und CE werden makroskopische Simulationen herangezogen, um den Ursprung unterschiedlichen Voc vs. Lichtintensit{\"a}t-Verhaltens zu erkl{\"a}ren.}, subject = {Organische Solarzelle}, language = {en} } @phdthesis{Brueckner2017, author = {Br{\"u}ckner, Charlotte}, title = {The Electronic Structure and Optoelectronic Processes at the Interfaces in Organic Solar Cells Composed of Small Organic Molecules - A Computational Analysis of Molecular, Intermolecular, and Aggregate Aspects}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Describing the light-to-energy conversion in OSCs requires a multiscale understanding of the involved optoelectronic processes, i.e., an understanding from the molecular, intermolecular, and aggregate perspective. This thesis presents such a multiscale description to provide insight into the processes in the vicinity of the organic::organic interface, which are crucial for the overall performance of OSCs. Light absorption, exciton diffusion, photoinduced charge transfer at the donor-acceptor interface, and charge separation are included. In order to establish structure-property relationships, a variety of different molecular p-type semiconductors are combined at the organic donor-acceptor heterojunction with fullerene C60, one of the most common acceptors in OSCs. Starting with a comprehensive analysis of the accuracy of diverse ab initio, DFT, and semiempiric methods for the properties of the individual molecules, the intermolecular, and aggregate/device stage are subsequently addressed. At all stages, both methodological concepts and physical aspects in OSCs are discussed to extend the microscopic understanding of the charge generation processes.}, subject = {Benchmark}, language = {en} }