@article{WangorschButtMarketal.2011, author = {Wangorsch, Gaby and Butt, Elke and Mark, Regina and Hubertus, Katharina and Geiger, J{\"o}rg and Dandekar, Thomas and Dittrich, Marcus}, title = {Time-resolved in silico modeling of fine-tuned cAMP signaling in platelets: feedback loops, titrated phosphorylations and pharmacological modulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-69145}, year = {2011}, abstract = {Background: Hemostasis is a critical and active function of the blood mediated by platelets. Therefore, the prevention of pathological platelet aggregation is of great importance as well as of pharmaceutical and medical interest. Endogenous platelet inhibition is predominantly based on cyclic nucleotides (cAMP, cGMP) elevation and subsequent cyclic nucleotide-dependent protein kinase (PKA, PKG) activation. In turn, platelet phosphodiesterases (PDEs) and protein phosphatases counterbalance their activity. This main inhibitory pathway in human platelets is crucial for countervailing unwanted platelet activation. Consequently, the regulators of cyclic nucleotide signaling are of particular interest to pharmacology and therapeutics of atherothrombosis. Modeling of pharmacodynamics allows understanding this intricate signaling and supports the precise description of these pivotal targets for pharmacological modulation. Results: We modeled dynamically concentration-dependent responses of pathway effectors (inhibitors, activators, drug combinations) to cyclic nucleotide signaling as well as to downstream signaling events and verified resulting model predictions by experimental data. Experiments with various cAMP affecting compounds including antiplatelet drugs and their combinations revealed a high fidelity, fine-tuned cAMP signaling in platelets without crosstalk to the cGMP pathway. The model and the data provide evidence for two independent feedback loops: PKA, which is activated by elevated cAMP levels in the platelet, subsequently inhibits adenylyl cyclase (AC) but as well activates PDE3. By multi-experiment fitting, we established a comprehensive dynamic model with one predictive, optimized and validated set of parameters. Different pharmacological conditions (inhibition, activation, drug combinations, permanent and transient perturbations) are successfully tested and simulated, including statistical validation and sensitivity analysis. Downstream cyclic nucleotide signaling events target different phosphorylation sites for cAMP- and cGMP-dependent protein kinases (PKA, PKG) in the vasodilator-stimulated phosphoprotein (VASP). VASP phosphorylation as well as cAMP levels resulting from different drug strengths and combined stimulants were quantitatively modeled. These predictions were again experimentally validated. High sensitivity of the signaling pathway at low concentrations is involved in a fine-tuned balance as well as stable activation of this inhibitory cyclic nucleotide pathway. Conclusions: On the basis of experimental data, literature mining and database screening we established a dynamic in silico model of cyclic nucleotide signaling and probed its signaling sensitivity. Thoroughly validated, it successfully predicts drug combination effects on platelet function, including synergism, antagonism and regulatory loops.}, subject = {Vasodilatator-stimuliertes Phosphoprotein}, language = {en} } @phdthesis{Thumati2008, author = {Thumati, Naresh Reddy}, title = {Characterization of new protein kinases of the EVH1 domain containing protein VASP and identification of binding partners for a new EVH1 domain of the Spred2 protein : A case study on protein interactions of EVH1 domain containing proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26617}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Protein interactions as mediated by catalytic or non-catalytic protein domains contribute to cellular signal transduction processes by covalent protein modification of or non-covalent binding to interaction partners. Ena/VASP homology 1 (EVH1) domains are found in different signal transduction proteins as N-terminal non-catalytic adaptor modules of ~ 115 amino acids sharing a common fold. By targeting their host proteins to subcellular sites of action they are involved in several signalling cascades which include protein phosphorylation and cytoskeletal reorganisation. In this study, protein interactions of the two EVH1 domain containing proteins VASP and Spred2 were studied according to their involvement in different and non-overlapping signal transduction pathways of the cell. EVH1 domains were first described in the Ena/VASP protein family with the Vasodilator-stimulated phosphoprotein VASP being its founding member. As a cytoskeleton-associated protein VASP not only interacts with different proteins of the actin network but it is also a substrate for cAMP- and cGMP-dependent protein kinases. However the full complement of protein kinases targeting VASP as their substrate is still unknown. Here we used mouse cardiac fibroblast (MCFB) cells in order to study the phosphorylation status of VASP and identify new candidate protein kinases involved after serum stimulation of these cells. Using phosphosite-specific antibodies we found that serum stimulation induces a phosphorylation of VASP at Ser-157 in a time-dependent manner reaching its maximum after 90 min of stimulation. We developed an interaction graph model of possible candidate protein kinases involved. Using a pharmacological perturbation analysis with different combinations of specific protein kinase inhibitors and activators we excluded any contribution of cGMP-dependent protein kinase and Rho kinases to this process and identified a combined action of classical isoforms of PKCs and PKA in serum-stimulated VASP phosphorylation at Ser-157 positioning PKC upstream of PKA in this signalling pathway. We hypothesise that PKC receives an external stimulatory signal upon serum stimulation of MCFB cells which is passed either directly or indirectly to PKA which finally phosphorylates VASP at Ser-157. A new EVH1 domain has been described recently in the Spred proteins (Sprouty related proteins containing an EVH1 domain) which are inhibitors of the Ras/Raf/MAP kinase pathway. Our laboratory has been involved in the elucidation of the atomic structure of the human Spred2 EVH1 domain by protein NMR spectroscopy (PDB 2JP2; 2007). A positively charged binding interface of this EVH1 domain suggests an interaction with negatively charged ligands; however no interaction partners of this domain have been described so far. In the second part of this study, we used different genetic and biochemical screening methods to search for ligands of the Spred2 EVH1 domain. A bacterial two-hybrid system was established using a physically well characterized interaction of the VASP EVH1 domain with a panel of its ActA binding peptides as positive controls to screen a human brain cDNA expression library at different stringencies for candidate Spred2 EVH1 interaction partners. However none of the clones isolated could be genetically and physically validated to support Spred2 EVH1 specific interactions. An in-vitro screening of a 9-mer phage display peptide library using purified GST-Spred2 EVH1 fusion protein was performed together with a Fyn-SH3 fusion protein as a positive control. In contrast to the Fyn-SH3 domain the majority of phages isolated with the Spred2 EVH1 domain either carried no inserts or inserts with stop codons suggesting a highly non-specific interaction of the phage coat protein with the latter domain but neither the Fyn-SH3 domain nor the GST moiety. Isolation of a 13-mer proline-rich sequence was particularly surprising in this context. In order to address possible interactions of the Spred2 EVH1 domain with non-peptidergic ligands protein-lipid interaction assays were performed. Quantitative binding studies to purified Spred2 EVH1 using a liposome sedimentation assay however excluded any interaction of candidate phospholipids of the phosphatidyl inositol phosphate class with the Spred2 EVH1 domain. A natively folded and thus binding-competent conformation of the purified proteins used was assessed independently by 1H protein NMR spectroscopy. In summary the cumulative evidence of our genetic and biochemical screening experiments suggests that the still elusive Spred2 EVH1 ligand(s) may be formed of hydrophobic peptide epitopes larger than nine amino acids in size and carrying negative charge(s). A phosphorylation of Spred2 EVH1 binding epitopes by a post-translational modification should be seriously considered in future experiments.}, subject = {VASP}, language = {en} } @phdthesis{Offner2017, author = {Offner, Kristin}, title = {SH3-mediated protein interactions of Mena and VASP}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154481}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Regulation of actin cytoskeletal turnover is necessary to coordinate cell movement and cell adhesion. Proteins of the Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family are important mediators in cytoskeleton control, linking cyclic nucleotide signaling pathways to actin assembly. In mammals, the Ena/VASP family consists of mammalian Enabled (Mena), VASP, and Ena-VASP-like (EVL). The family members share a tripartite domain organization, consisting of an N-terminal Ena/VASP homology 1 (EVH1) domain, a central proline-rich region (PRR), and a C-terminal EVH2 domain. The EVH1 domain mediates binding to the focal adhesion proteins vinculin and zyxin, the PRR interacts with the actin-binding protein profilin and with Src homology 3 (SH3) domains, and the EVH2 domain mediates tetramerization and actin binding. Endothelial cells line vessel walls and form a semipermeable barrier between blood and the underlying tissue. Endothelial barrier function depends on the integrity of cell-cell junctions and defective sealing of cell-cell contacts results in vascular leakage and edema formation. In a previous study, we could identify a novel interaction of the PRR of VASP with αII-spectrin. VASP-targeting to endothelial cell-cell contacts by interaction with the αII-spectrin SH3 domain is sufficient to initiate perijunctional actin filament assembly, which in turn stabilizes cell-cell contacts and decreases endothelial permeability. Conversely, barrier function of VASP-deficient endothelial cells and microvessels of VASP- null mice is defective, demonstrating that αII-spectrin/VASP complexes regulate endothelial barrier function in vivo. The aim of the present study was to characterize the structural aspects of the binding of Ena/VASP proteins to αII-spectrin in more detail. These data are highly relevant to understand the cardiovascular function of VASP and its subcellular targeting. In the present study, the following points were experimentally addressed: 1. Comparison of the interaction between αII-spectrin and Mena, VASP, or EVL In contrast to the highly conserved EVH1/EVH2 domains, the PRR is the most divergent part within the Ena/VASP proteins and may differ in binding modes and mechanisms of regulation. More specifically, VASP contains a triple GP5 motif, whereas EVL and Mena contain one or more GP6 motifs or even longer proline stretches. In the present study, we used peptide scans and competitive αII-spectrin SH3 pull-down assays with the recombinant Mena, VASP, and VASP mutants to investigate the relative binding efficiency. Our results indicate that binding of the αII-spectrin SH3 domain to GP6 motifs is superior to GP5 motifs, giving a rationale for a stronger interaction of αII-spectrin with EVL and Mena than with VASP. 2. Interaction of SH3i with Ena/VASP proteins In the mammalian heart, an αII-spectrin splice variant exists (SH3i), which contains a 20 amino acid insertion C-terminal to the SH3 domain. We used GST-fusion proteins of αII-spectrin, comprising the SH3 domain with or without the alternatively spliced amino acids, to pull-down recombinant Mena, VASP or VASP mutants. The results demonstrate a substantially increased binding of the C-terminal extended SH3 domain as compared to the general αII-spectrin isoform without the 20 amino acid insertion. These findings were also confirmed in pull-down experiments with heart lysates and purified Mena from heart muscle. The increased binding was not due to an alternative, SH3-independent binding interface because a pointmutation of the SH3 domain (W1004R) in the alternatively spliced αII-spectrin isoform completely abrogated the interaction. To analyze the interaction of SH3i and Ena/VASP proteins in living cells, we expressed the extended SH3 domain as GFP fusion proteins in endothelial cells. Here, we observed an extensive co-localization with Mena and VASP at the leading edge of lamellipodia confirming the in vivo relevance of the interaction with potential impact on cell migration and angiogenesis. 3. Binding affinity and influence of the Ena/VASP tetramerization domain We also determined the binding affinity of the general and the alternatively spliced αII-spectrin SH3 with Ena/VASP proteins by isothermal titration calorimetry (ITC) using a peptide from the PRR of Mena (collaboration with Dr. Stephan Feller, University of Oxford). Surprisingly, the binding affinity of the general SH3 domain was low (~900 μM) as compared to other SH3 domain- mediated interactions, which commonly display binding constants in the low micromolar range. Furthermore and in contrast to the pull-down assays, we could not detect an increased binding affinity of the C-terminally extended SH3 domain. This could be either explained by the existence of a third protein, which "bridges" the Mena/αII-spectrin complex in the pull-down assays, or, more likely, by the small size of the Mena peptide, which lacks major parts of the Mena protein, including the tetramerization domain. Indeed, it has been previously shown that the tetramerization of Ena is crucial for the interaction with the Abl- SH3 domain, although no SH3 binding sites are found in the tetramerization domain. To address this point experimentally, we used a VASP mutant that lacks the tetramerization domain in pull-down assays. Neither the general nor the alternatively spliced SH3 domain bound to the monomeric VASP, demonstrating the crucial (indirect) impact of Ena/VASP tetramerization on the interaction with αII-spectrin. In summary, we conclude that the αII-spectrin SH3 domain binds to the proline- rich region of all Ena/VASP proteins. However, binding to EVL and Mena, which both possess one or more GP6 motifs, is substantially more efficient than VASP, which only contains GP5 motifs. The C-terminally extended SH3 domain, which is present in the αII-spectrin splice variant SH3i, binds stronger to the Ena/VASP proteins than the general isoform and expression of the isolated domain is sufficient for co-localization with Ena/VASP in living endothelial cells. Finally, the tetramerization of the Ena/VASP proteins is indispensable for the interaction with either isoform of αII-spectrin.}, language = {en} } @phdthesis{Merkel2011, author = {Merkel, Carla Jennifer}, title = {Characterisation of Mena Promoter Activity and Protein Expression in Wild-type and Gene-trapped Mice}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-70414}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Proteins of the Ena/VASP protein family are important regulators of actin and participate in cell-cell and cell-matrix adhesions. To date, the physiological importance of Ena/VASP proteins for integrity of the cardiovascular system has remained unclear. To study cardiovascular functions of Mena and VASP, we used an established VASP knockout mouse in combination with a novel gene-trap-based model to ablate Mena function. In the mutated Mena mouse, the endogenous Mena gene is disrupted by the insertion of a β-galactosidase construct and β-galactosidase expression is under the control of the endogenous Mena promoter. X-gal staining of mouse organs revealed Mena promoter activity in smooth muscle layers of vessels, intestines and bronchioles, but also in cells of the brain, in cardiomyocytes and in the respiratory epithelium of bronchioles. In wild-type mice, Western blotting revealed differing protein expression patterns of VASP and Mena. Mena expression was observed in almost every tissue, predominantly in heart, lung, stomach, large intestine, testis, brain and eye. Additionally, the neuronalspecific Mena isoform was expressed in brain, eye, and slightly in heart and stomach. VASP protein, in contrast, was predominantly detected in spleen and thrombocytes. In gene-trapped mice, Mena expression was largely reduced in heart, lung and stomach but only slightly decreased in brain and testis. Immunofluorescence microscopy revealed colocalisation of Mena and F-actin at intercalated discs of cardiomyocytes and strong colocalisation of Mena and α- smooth-muscle-actin in vessels and bronchioles. Functional analysis of Mena/VASP-mutated and wild-type mice using electrocardiography suggested that the depletion of either Mena or VASP does not interfere with normal heart function. However, in double-deficient mice, the resting heart rate was significantly increased, probably reflecting a mechanism to compensate defects in ventricle contraction and to maintain a normal cardiac output. In agreement, cardiac catheter investigations suggested dilated cardiomyopathy in doubledeficient mice. Thus, although Western blot analysis showed differing protein expression patterns of Mena and VASP, these findings suggest that Mena and VASP mutually compensate for each other. Concerning Mena, we propose an important role of the protein in vessel walls, cardiomyocytes and bronchioles.}, subject = {Spectrin}, language = {en} } @phdthesis{Benz2007, author = {Benz, Peter Michael}, title = {Cytoskeleton assembly at endothelial cell-cell contacts is regulated by Alpha-II-spectrin/vasp complexes}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23802}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Directed cortical actin assembly is the driving force for intercellular adhesion. Vasodilator-stimulated phosphoprotein (VASP) participates in actin-fiber formation and VASP activity is regulated by phosphorylations. We screened for endothelial cell proteins, which bind to VASP dependent on its phosphorylation status. Differential proteomics identified \&\#945;II-spectrin as novel VASP-interacting protein. \&\#945;II-spectrin binds to the triple GP5-motif in VASP via its SH3 domain. cAMP-dependent protein kinase-mediated VASP phosphorylation at Ser157 inhibits \&\#945;II-spectrin/VASP complex formation. VASP becomes dephosphorylated upon formation of cell-cell contacts and in confluent but not in sparse endothelial cells \&\#945;II-spectrin colocalizes with non-phosphorylated VASP at cell-cell junctions. Ectopic expression of the \&\#945;II-spectrin SH3 domain fused to claudin-5 translocates VASP to cell-cell contacts and is sufficient to initiate the formation of cortical actin cytoskeletons. \&\#945;II-spectrin SH3 domain overexpression stabilizes cell-cell contacts and decreases endothelial permeability. Conversely, permeability of VASP-deficient endothelial cells is elevated. In a skin edema model, microvascular leakage is increased in VASP-deficient over wild-type mice. We propose that \&\#945;II-spectrin/VASP complexes regulate cortical actin cytoskeleton assembly with implications for formation of endothelial cell-cell contacts and regulation of vascular permeability.}, language = {en} }