@phdthesis{Nikolaev2005, author = {Nikolaev, Viacheslav}, title = {Development and application of fluorescent cAMP und cGMP biosensors}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15673}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {The cyclic nucleotides cAMP and cGMP are two ubiquitous important second messengers, which regulate diverse physiological responses from vision and memory to blood pressure and thrombus formation. They act in cells via cAMP- and cGMP-dependent protein kinases (PKA and GK), cyclic nucleotide-gated channels and Epac. Although the concept of cyclic nucleotide signalling is well developed based on classical biochemical studies, these techniques have not allowed to analyze cAMP and cGMP in live cells with high temporal and spatial resolution. In the present study fluorescence resonance energy transfer was used to develop a technique for visualization of cAMP and cGMP in live cells and in vitro by means of fluorescent biosensors. Ligand-induced conformational change in a single nucleotide-binding domain flanked with green fluorescent protein mutants was used for dynamic, highly sensitive measurements of cAMP and cGMP. Such biosensors retained binding properties and chemical specificity of unmodified domains, allowing to image cyclic nucleotides in a physiologically relevant range of concentrations. To develop cAMP-sensors, binding domains of PKA, Epac and cAMP-gated HCN-channel were used. cGMP-sensors were based on single domains of GK and phosphodiesterases (PDEs). Sensors based on Epac were used to analyze spatio-temporal dynamics of cAMP in neurons and macrophages, demonstrating that cAMP-gradients travel with a high speed (~ 40 \&\#956;m/s) throughout the entire cytosol. To understand the mechanisms of cAMP-compartmentation, kinetics properties of phosphodi-esterase (PDE2) were, next, analyzed in aldosterone producing cells. PDE2 is able to rapidly hydrolyze extensive amounts of cAMP, so that the speed of cAMP-hydrolysis is much faster than that of its synthesis, which might serve as a basis of compartmentation. cAMP-sensors were also used to develop a clinically relevant diagnostic method for reliable detection of \&\#946;1-adrenergic receptor autoantibodies in cardiac myopathy patients, which has allowed to significantly increase the sensitivity of previously developed diagnostic approaches. Conformational change in a single binding domain of GK and PDE was, next, used to create novel fluorescent biosensors for cGMP. These sensors demonstrated high spatio-temporal resolution and were applied to analyze rapid dynamics of cGMP production by soluble and particulate guanylyl cyclases as well as to image cGMP in mesangial cells. In summary, highly sensitive biosensors for cAMP and cGMP based on single cyclic nucleotide-binding domains have been developed and used in various biological and clinically relevant applications.}, subject = {Cyclo-AMP}, language = {en} }