@phdthesis{Zoran2022, author = {Zoran, Tamara}, title = {Multilevel analysis of the human immune response to \(Aspergillus\) \(fumigatus\) infection: Characteristic molecular signatures and individual risk factors}, doi = {10.25972/OPUS-29851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-298512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Although the field of fungal infections advanced tremendously, diagnosis of invasive pulmonary aspergillosis (IPA) in immunocompromised patients continues to be a challenge. Since IPA is a multifactorial disease, investigation from different aspects may provide new insights, helpful for improving IPA diagnosis. This work aimed to characterize the human immune response to Aspergillus fumigatus in a multilevel manner to identify characteristic molecular candidates and risk factors indicating IPA, which may in the future support already established diagnostic assays. We combined in vitro studies using myeloid cells infected with A. fumigatus and longitudinal case-control studies investigating patients post allogeneic stem cell transplantation (alloSCT) suffering from IPA and their match controls. Characteristic miRNA and mRNA signatures indicating A. fumigatus-infected monocyte-derived dendritic cells (moDCs) demonstrated the potential to differentiate between A. fumigatus and Escherichia coli infection. Transcriptome and protein profiling of alloSCT patients suffering from IPA and their matched controls revealed a distinctive IPA signature consisting of MMP1 induction and LGAL2 repression in combination with elevated IL-8 and caspase-3 levels. Both, in vitro and case-control studies, suggested cytokines, matrix-metallopeptidases and galectins are important in the immune response to A. fumigatus. Identified IPA characteristic molecular candidates are involved in numerous processes, thus a combination of these in a distinctive signature may increase the specificity. Finally, low monocyte counts, severe GvHD of the gut (grade ≥ 2) and etanercept administration were significantly associated with IPA diagnosis post alloSCT. Etanercept in monocyte-derived macrophages (MDM) infected with A. fumigatus downregulates genes involved in the NF-κB and TNF-α pathway and affects the secretion of CXCL10. Taken together, identified characteristic molecular signatures and risk factors indicating IPA may in the future in combination with established fungal biomarkers overcome current diagnostic challenges and help to establish tailored antifungal therapy. Therefore, further multicentre studies are encouraged to evaluate reported findings.}, subject = {Aspergillus fumigatus}, language = {en} } @phdthesis{Zinner2012, author = {Zinner, Thomas}, title = {Performance Modeling of QoE-Aware Multipath Video Transmission in the Future Internet}, doi = {10.25972/OPUS-6106}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-72324}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Internet applications are becoming more and more flexible to support diverge user demands and network conditions. This is reflected by technical concepts, which provide new adaptation mechanisms to allow fine grained adjustment of the application quality and the corresponding bandwidth requirements. For the case of video streaming, the scalable video codec H.264/SVC allows the flexible adaptation of frame rate, video resolution and image quality with respect to the available network resources. In order to guarantee a good user-perceived quality (Quality of Experience, QoE) it is necessary to adjust and optimize the video quality accurately. But not only have the applications of the current Internet changed. Within network and transport, new technologies evolved during the last years providing a more flexible and efficient usage of data transport and network resources. One of the most promising technologies is Network Virtualization (NV) which is seen as an enabler to overcome the ossification of the Internet stack. It provides means to simultaneously operate multiple logical networks which allow for example application-specific addressing, naming and routing, or their individual resource management. New transport mechanisms like multipath transmission on the network and transport layer aim at an efficient usage of available transport resources. However, the simultaneous transmission of data via heterogeneous transport paths and communication technologies inevitably introduces packet reordering. Additional mechanisms and buffers are required to restore the correct packet order and thus to prevent a disturbance of the data transport. A proper buffer dimensioning as well as the classification of the impact of varying path characteristics like bandwidth and delay require appropriate evaluation methods. Additionally, for a path selection mechanism real time evaluation mechanisms are needed. A better application-network interaction and the corresponding exchange of information enable an efficient adaptation of the application to the network conditions and vice versa. This PhD thesis analyzes a video streaming architecture utilizing multipath transmission and scalable video coding and develops the following optimization possibilities and results: Analysis and dimensioning methods for multipath transmission, quantification of the adaptation possibilities to the current network conditions with respect to the QoE for H.264/SVC, and evaluation and optimization of a future video streaming architecture, which allows a better interaction of application and network.}, subject = {Video{\"u}bertragung}, language = {en} } @phdthesis{Zink2024, author = {Zink, Johannes}, title = {Algorithms for Drawing Graphs and Polylines with Straight-Line Segments}, doi = {10.25972/OPUS-35475}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354756}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Graphs provide a key means to model relationships between entities. They consist of vertices representing the entities, and edges representing relationships between pairs of entities. To make people conceive the structure of a graph, it is almost inevitable to visualize the graph. We call such a visualization a graph drawing. Moreover, we have a straight-line graph drawing if each vertex is represented as a point (or a small geometric object, e.g., a rectangle) and each edge is represented as a line segment between its two vertices. A polyline is a very simple straight-line graph drawing, where the vertices form a sequence according to which the vertices are connected by edges. An example of a polyline in practice is a GPS trajectory. The underlying road network, in turn, can be modeled as a graph. This book addresses problems that arise when working with straight-line graph drawings and polylines. In particular, we study algorithms for recognizing certain graphs representable with line segments, for generating straight-line graph drawings, and for abstracting polylines. In the first part, we first examine, how and in which time we can decide whether a given graph is a stick graph, that is, whether its vertices can be represented as vertical and horizontal line segments on a diagonal line, which intersect if and only if there is an edge between them. We then consider the visual complexity of graphs. Specifically, we investigate, for certain classes of graphs, how many line segments are necessary for any straight-line graph drawing, and whether three (or more) different slopes of the line segments are sufficient to draw all edges. Last, we study the question, how to assign (ordered) colors to the vertices of a graph with both directed and undirected edges such that no neighboring vertices get the same color and colors are ascending along directed edges. Here, the special property of the considered graph is that the vertices can be represented as intervals that overlap if and only if there is an edge between them. The latter problem is motivated by an application in automated drawing of cable plans with vertical and horizontal line segments, which we cover in the second part. We describe an algorithm that gets the abstract description of a cable plan as input, and generates a drawing that takes into account the special properties of these cable plans, like plugs and groups of wires. We then experimentally evaluate the quality of the resulting drawings. In the third part, we study the problem of abstracting (or simplifying) a single polyline and a bundle of polylines. In this problem, the objective is to remove as many vertices as possible from the given polyline(s) while keeping each resulting polyline sufficiently similar to its original course (according to a given similarity measure).}, subject = {Graphenzeichnen}, language = {en} } @phdthesis{Zimmermann2020, author = {Zimmermann, Henriette}, title = {Antigenic variation and stumpy development in \(Trypanosoma\) \(brucei\)}, doi = {10.25972/OPUS-14690}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146902}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {The eukaryotic parasite Trypanosoma brucei has evolved sophisticated strategies to persist within its mammalian host. Trypanosomes evade the hosts' immune system by antigenic variation of their surface coat, consisting of variant surface glycoproteins (VSGs). Out of a repertoire of thousands of VSG genes, only one is expressed at any given time from one of the 15 telomeric expression sites (ES). The VSG is stochastically exchanged either by a transcriptional switch of the active ES (in situ switch) or by a recombinational exchange of the VSG within the active ES. However, for infections to persist, the parasite burden has to be limited. The slender (sl) bloodstream form secretes the stumpy induction factor (SIF), which accumulates with rising parasitemia. SIF induces the irreversible developmental transition from the proliferative sl to the cell cycle-arrested but fly-infective stumpy (st) stage once a concentration threshold is reached. Thus, antigenic variation and st development ensure persistent infections and transmissibility. A previous study in monomorphic cells indicated that the attenuation of the active ES could be relevant for the development of trypanosomes. The present thesis investigated this hypothesis using the inducible overexpression of an ectopic VSG in pleomorphic trypanosomes, which possess full developmental competence. These studies revealed a surprising phenotypic plasticity: while the endogenous VSG was always down-regulated upon induction, the ESactivity determined whether the VSG overexpressors arrested in growth or kept proliferating. Full ES-attenuation induced the differentiation of bona fide st parasites independent of the cell density and thus represents the sole natural SIF-independent differentiation trigger to date. A milder decrease of the ES-activity did not induce phenotypic changes, but appeared to prime the parasites for SIF-induced differentiation. These results demonstrate that antigenic variation and development are linked and indicated that the ES and the VSG are independently regulated. Therefore, I investigated in the second part of my thesis how ES-attenuation and VSG-silencing can be mediated. Integration of reporters with a functional or defective VSG 3'UTR into different genomic loci showed that the maintenance of the active state of the ES depends on a conserved motif within the VSG 3'UTR. In situ switching was only triggered when the telomere-proximal motif was partially deleted, suggesting that it serves as a DNA-binding motif for a telomere-associated protein. The VSG levels seem to be additionally regulated in trans based on the VSG 3'UTR independent of the genomic context, which was reinforced by the regulation of a constitutively expressed reporter with VSG 3' UTR upon ectopic VSG overexpression.}, subject = {Trypanosoma brucei}, language = {en} } @phdthesis{ZimmermannneePapp2024, author = {Zimmermann [n{\´e}e Papp], Lena}, title = {Platelets as modulators of blood-brain barrier disruption and inflammation in the pathophysiology of ischemic stroke}, doi = {10.25972/OPUS-30285}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-302850}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Ischemia-reperfusion injury (I/R injury) is a common complication in ischemic stroke (IS) treatment, which is characterized by a paradoxical perpetuation of tissue damage despite the successful re-establishment of vascular perfusion. This phenomenon is known to be facilitated by the detrimental interplay of platelets and inflammatory cells at the vascular interface. However, the spatio-temporal and molecular mechanisms underlying these cellular interactions and their contribution to infarct progression are still incompletely understood. Therefore, this study intended to clarify the temporal mechanisms of infarct growth after cerebral vessel recanalization. The data presented here could show that infarct progression is driven by early blood-brain-barrier perturbation and is independent of secondary thrombus formation. Since previous studies unravelled the secretion of platelet granules as a molecular mechanism of how platelets contribute to I/R injury, special emphasis was placed on the role of platelet granule secretion in the process of barrier dysfunction. By combining an in vitro approach with a murine IS model, it could be shown that platelet α-granules exerted endothelial-damaging properties, whereas their absence (NBEAL2-deficiency) translated into improved microvascular integrity. Hence, targeting platelet α-granules might serve as a novel treatment option to reduce vascular integrity loss and diminish infarct growth despite recanalization. Recent evidence revealed that pathomechanisms underlying I/R injury are already instrumental during large vessel occlusion. This indicates that penumbral tissue loss under occlusion and I/R injury during reperfusion share an intertwined relationship. In accordance with this notion, human observational data disclosed the presence of a neutrophil dominated immune response and local platelet activation and secretion, by the detection of the main components of platelet α-granules, within the secluded vasculature of IS patients. These initial observations of immune cells and platelets could be further expanded within this thesis by flow cytometric analysis of local ischemic blood samples. Phenotyping of immune cells disclosed a yet unknown shift in the lymphocyte population towards CD4+ T cells and additionally corroborated the concept of an immediate intravascular immune response that is dominated by granulocytes. Furthermore, this thesis provides first-time evidence for the increased appearance of platelet-leukocyte-aggregates within the secluded human vasculature. Thus, interfering with immune cells and/or platelets already under occlusion might serve as a potential strategy to diminish infarct expansion and ameliorate clinical outcome after IS.}, subject = {Schlaganfall}, language = {en} } @phdthesis{Zilker2019, author = {Zilker, Markus}, title = {The stability of finished pharmaceutical products and drug substances beyond their labeled expiry dates}, doi = {10.25972/OPUS-18069}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180695}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Upon approval of a drug, the stability of the API and the FPP has to be studied intensively because it determines the shelf-life. If a drug is found to be stable, the expiry date is arbitrary set to five years at the maximum, if a drug tends to undergo degradation, the expiry date is set shorter. The drug product must comply with predefined specifications in accordance with the ICH guidelines Q6A and Q6B during its entire market life. The content of the active substance is required to be within a specification of 95-105\% of its labeled claim until expiry corresponding to the ICH guideline Q1A(R2). However, there is little or scattered literature information addressing the stability of drug products beyond their expiry dates. The objective of this thesis was to study and assess the long-term stability of a collection involving numerous pure drug substances and ampoules manufactured in the 20th century. The content and the impurity profile were examined by means of appropriate analytical methods, mainly using liquid chromatography. The results were compared to data being available in the literature. Assessing the stability regarding the dosage form and the affiliation of the drug class was conducted. The experimental studies comprise the examination of 50 drug substances manufactured 20-30 years ago and 14 long expired ampoules which were older than 40 years in the time of analysis, exceeding many times the maximum shelf life of five years. For investigation of the solid drug substances, pharmacopoeial methods were applied as far as possible. Indeed, results of the study showed that 44 tested substances still complied with the specification of the Ph. Eur. with regard to the content and impurity profile, even after more than two decades of storage. For analysis of the injection solutions, HPLC-UV and HPLC-ESI/MS techniques were applied, commonly based on liquid chromatography methods of the Ph. Eur. for determination of related substances. Each method was further validated for its application to ensure accurate API quantification corresponding to ICH Q2(R1). Quite a few ampoules were identified to show surprisingly high stability. In spite of their age of 53-72 years, APIs such as caffeine, etilefrine, synephrine, metamizole sodium, furosemide, and sodium salicylate complied with the specified content that is valid nowadays, respectively. Nevertheless, typical degradation reaction, e.g. hydrolysis, oxidation, or isomerization, was observed in all remaining ampoules. Various degrees of hydrolysis were revealed for scopolamine, procaine, and adenosine triphosphate, the contents were decreased to 71\%, 70\%, and 15\% of the declared concentrations, respectively. In the epinephrine and dipyridamole ampoules, oxidative degradation has been occurred, finding respective API contents of more or less 70\%. For dihydroergotamine, excessive decomposition by epimerization was observed, resulting in an API content of 21\% and degradation by isomerization was found in lobeline, still containing 64\% of the labeled claim. In conclusion, supported by the data of the present studies and the literature, defining and authorizing a longer shelf-life may be applicable to numerous pharmaceuticals which should be considered by pharmaceutical manufacturers and regulatory authorities, if justified based on stability studies. A general extension of the shelf-lives of drug products and the abolishment or extension of the maximum shelf-life limit of five years would prevent disposing of still potent medications and save a lot of money to the entire health care system.}, subject = {Stabilit{\"a}t}, language = {en} } @phdthesis{Zieschang2014, author = {Zieschang, Fabian}, title = {Energy and Electron Transfer Studies of Triarylamine-based Dendrimers and Cascades}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-101866}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {In this work the synthesis of dendritic macromolecules and small redox cascades was reported and studies of their energy and electron transfer properties discussed. The chromophores in the dendrimers and the redox cascades are linked via triazoles, which were built up by CuAAC. Thereby, a synthetic concept based on building blocks was implemented, which allowed the exchange of all basic components. Resulting structures include dendrimers composed exclusively of TAAs (G1-G3), dendrimers with an incorporated spirobifluorene core (spiro-G1 and spiro-G2) and the donor-acceptor dendrimer D-A-G1, in which the terminal groups are exchanged by NDIs. Furthermore, a series of model compounds was synthesised in order to achieve a better understanding of the photophysical processes in the dendrimers. A modification of the synthetic concept for dendrimers enabled the synthesis of a series of donor-acceptor triads (T-Me, T-Cl and T-CN) consisting of two TAA donors and one NDI acceptor unit. The intermediate TAA chromophore ensured a downhill redox gradient from the NDI to the terminal TAA, which was proved by cyclic voltammetry measurements. The redox potential of the intermediate TAA was adjusted by different redox determining substituents in the "free" p-position of the TAA. Additionally, two dyads (Da and Db) were synthesised which differ in the junction of the triazole to the TAA or the NDI, respectively. In these cascades a nodal-plane along the N-N-axes in the NDI and a large twist angle between the NDI and the N-aryl substituent guaranteed a small electronic coupling. The photophysical investigations of the dendrimers focused on the homo-energy transfer properties in the TAA dendrimers G1-G3. Steady-state emission spectroscopy revealed that the emission takes place from a charge transfer state. The polar excited state resulted in a strong Stokes shift of the emission, which in turn led to a small spectral overlap integral between the absorption of the acceptor and the emission of the donor in the solvent relaxed state. According to the F{\"o}rster theory, the overlap integral strongly determines the energy transfer rate. Fluorescence up-conversion measurements showed a strong and rapid initial fluorescence anisotropy decay and a much slower decrease on the longer time scale. The experiment revealed a fast energy transfer in the first 2 ps followed by a much slower energy hopping. Time resolved emission spectra (TRES) of the model compound M indicated a solvent relaxation on the same time scale as the fast energy transfer. The F{\"o}rster estimation of energy transfer rates in G1 explains fast energy transfer in the vibrotionally relaxed state before solvent relaxation starts. Thereby, the emission spectrum of G1 in cyclohexane served as the time zero spectrum. Thus, solvent relaxation and fast energy transfer compete in the first two ps after excitation and it is crucial to discriminate between energy transfer in the Franck-Condon and in the solvent relaxed state. Furthermore, this finding demonstrates that fast energy transfer occurs even in charge transfer systems where a large Stokes shift prevents an effective spectral overlap integral if there is a sufficient overlap integral in before solvent relaxation. Energy transfer upon excitation was also observed in the spiro dendrimers spiro-G1 and spiro-G2 and identified by steady-state emission anisotropy measurements. It was assumed that the energy in spiro-G1 is completely distributed over the entire molecule while the energy in spiro-G2 is probably distributed over only one individual branch. This finding was based on a more polarised emission of spiro-G2 compared to spiro-G1. This issue has to be ascertained by e.g. time resolved emission anisotropy measurements in further energy transfer studies. Concerning the electron transfer properties of TAA-triazole systems the radical cations of G1-G2, spiro-G1 and spiro-G2 and of the model compound M were investigated by steady-state absorption spectroscopy. Experiments showed that the triazole bridge exhibits small electronic communication between the adjacent chromophores but still possesses sufficient electronic coupling to allow an effective electron transfer from one chromophore to the other. Due to the high density of chromophores, their D-A-D structure and their superficial centrosymmetry, the presented dendrimers are prospective candidates for two-photon absorption applications. The dyads, triads and the donor-acceptor dendrimer D-A-G1 were investigated regarding their photoinduced electron transfer properties and the effects that dominate charge separation and charge recombination in these systems. The steady-state absorption spectra of all cascades elucidated a superposition of the absorption characteristics of the individual subunits and spectra indicated that the chromophores do not interact in the electronic ground state. Time resolved transient absorption spectroscopy of the cascades was performed in the fs- and ns-time regime in MeCN and toluene as solvent. Measurements revealed that upon with 28200 cm-1 (355) nm and 26300 cm-1 (380 nm), respectively, an electron is transferred from the TAA towards the NDI unit yielding a CS state. In the triads at first a CS1 state is populated, in which the NDI is reduced and the intermediate TAA1 is oxidised. Subsequently, an additional electron transfer from the terminal TAA2 to TAA1 led to the fully CS2 state. Fully CS states of the dyads and triads exhibit lifetimes in the ns-time regime. In contrast for Db in MeCN, a lifetime of 43 ps was observed for the CS state together with the population of a 3NDI state. The signals of the other CS states decay biexponentially, which is a result of the presence of the 1CS and the 3CS states. While magnetic field dependent measurements of Db did not show an effect due to the large singlet-triplet splitting, T-CN exhibited a strong magnetic field dependence which is an evidence for the 1CS/3CS assignment. Further analysis of the singlet-triplet dynamics are required and are currently in progress. Charge recombination occurred in the Marcus inverted region for compounds solved in toluene and in the Marcus normal region for MeCN as solvent. However, a significant inverted region effect was observed only for Db. Triads are probably characterised by charge recombination rates in the inverted and in the normal region near to the vertex of the Marcus parabola. Hence the inverted region effect is not pronounced and the rate charge recombination rates are all in the same magnitude. However, compared to the charge recombination rate of Db the enlarged spatial distance between the terminal TAA and the NDI in the fully CS2 states in the triads resulted in reduced charge recombination rates by ca. one order of magnitude. More important than a small charge recombination rate is an overall lifetime of the CS states and this lifetime can significantly be enhanced by the population of the 3CS state. The reported results reveal that a larger singlet-triplet splitting in the dyads led to a CS state lifetime in the us time regime while a lifetime in the ns-time regime was observed in cases of the triads. Moreover, the singlet-triplet splitting was found to be solvent dependent in the triads, which is a promising starting point for further investigations concerning singlet-triplet splitting. The donor-acceptor dendrimer D-A-G1 showed similar characteristics to the dyads. The generation of a CS state is assumed due to a clear NDI radical anion band in the transient absorption spectrum. Noteworthy, the typical transient absorption band of the TAA radical cation is absent for D A-G1 in toluene. Bixon-Jortner analysis yielded a similar electronic coupling in D-A-G1 compared to the dyads. However, the charge recombination rate is smaller than of Db due to a more energetic CS state, which in the inverted region slows down charge recombination. In combination a singlet-triplet splitting similar to the dyads prolongs the CS state lifetime up to 14 us in diluted solution. Both effects result in an even better performance of D-A-G1 concerning energy conversion. D A-G1 is therefore a promising key structure for further studies on light harvesting applications. In a prospective study a second generation donor-acceptor dendrimer D-A-G2 might be an attractive structure accessible by "click reaction" of 13 and 8. D-A-G2 is expected to exhibit a downhill oriented gradient of CS states as assumed from the CV studies on G1-G3.}, subject = {Sternpolymere}, language = {en} } @phdthesis{Ziegler2016, author = {Ziegler, Christiane}, title = {Epigenetic Mechanisms in the Pathogenesis and Therapy of Anxiety Disorders}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-146815}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Anxiety disorders (AD) are common, disabling mental disorders, which constitute the most prevalent mental health condition conveying a high individual and socioeconomic burden. Social anxiety disorder (SAD), i.e. fear in social situations particularly when subjectively scrutinized by others, is the second most common anxiety disorder with a life time prevalence of 10\%. Panic disorder (PD) has a life time prevalence of 2-5\% and is characterized by recurrent and abrupt surges of intense fear and anticipatory anxiety, i.e. panic attacks, occurring suddenly and unexpected without an apparent cue. In recent years, psychiatric research increasingly focused on epigenetic mechanisms such as DNA methylation as a possible solution for the problem of the so-called "hidden heritability", which conceptualizes the fact that the genetic risk variants identified so far only explain a small part of the estimated heritability of mental disorders. In the first part of this thesis, oxytocin receptor (OXTR) gene methylation was investigated regarding its role in the pathogenesis of social anxiety disorder. In summary, OXTR methylation patterns were implicated in different phenotypes of social anxiety disorder on a categorical, neuropsychological, neuroendocrinological as well as on a neural network level. The results point towards a multilevel role of OXTR gene hypomethylation particularly at one CpG site (CpG3, Chr3: 8 809 437) within the protein coding region of the gene in SAD. The second part of the thesis investigated monoamine oxidase A (MAOA) gene methylation regarding its role in the pathogenesis of panic disorder as well as - applying a psychotherapy-epigenetic approach - its dynamic regulation during the course of cognitive behavioural therapy (CBT) in PD patients. First, MAOA hypomethylation was shown to be associated with panic disorder as well as with panic disorder severity. Second, in patients responding to treatment MAOA hypomethylation was shown to be reversible up to the level of methylation in healthy controls after the course of CBT. This increase in MAOA methylation along with successful psychotherapeutic treatment was furthermore shown to be associated with symptom improvement regarding agoraphobic avoidance in an independent replication sample of non-medicated patients with PD. Taken together, in the future the presently identified epigenetic patterns might contribute to establishing targeted preventive interventions and personalized treatment options for social anxiety disorder or panic disorder, respectively.}, subject = {Angst}, language = {en} } @phdthesis{Ziegenhals2018, author = {Ziegenhals, Thomas}, title = {The role of the miR-26 family in neurogenesis}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-156395}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {For the differentiation of a embryonic stem cells (ESCs) to neuronal cells (NCs) a complex and coordinated gene regulation program is needed. One important control element for neuronal differentiation is the repressor element 1 silencing transcription factor (REST) complex, which represses neuronal gene expression in non-neuronal cells. Crucial effector proteins of the REST complex are small phosphatases such as the CTDSPs (C-terminal domain small phosphatases) that regulate polymerase II activity by dephosphorylating the C-terminal domain of the polymerase, thereby repressing target genes. The stepwise inactivation of REST, including the CTDSPs, leads to the induction of a neuron-specific gene program, which ultimately induces the formation of neurons. The spatio-temporal control of REST and its effector components is therefore a crucial step for neurogenesis. In zebrafish it was shown that the REST-associated CTDSP2 is negatively regulated by the micro RNA (miR) -26b. Interestingly, the miR-26b is encoded in an intron of the primary transcript of CTDSP2. This gives the fundament of an intrinsic regulatory negative feedback loop, which is essential for the proceeding of neurogenesis. This feedback loop is active during neurogenesis, but inactive in non-neuronal cells. The reason for this is that the maturation of the precursor miR (pre-miR) to the mature miR-26 is arrested in non neuronal cells, but not in neurons. As only mature miRs are actively repressing genes, the regulation of miR-26 processing is an essential step in neurogenesis. In this study, the molecular basis of miR-26 processing regulation in the context of neurogenesis was addressed. The mature miR is processed from two larger precursors: First the primary transcript is cleaved by the enzyme DROSHA in the nucleus to form the pre-miR. The pre-miR is exported from the nucleus and processed further through the enzyme DICER to yield the mature miR. The mature miR can regulate gene expression in association with the RNA-induced silencing complex (RISC). Multiple different scenarios in which miR processing was regulated were proposed and experimentally tested. Microinjection studies using Xenopus leavis oocytes showed that slowdown or blockage of the nucleo-cytoplasmic transport are not the reason for delayed pre-miR-26 processing. Moreover, in vitro and in vivo miR-processing assays showed that maturation is most likely regulated through a in trans acting factor, which blocks processing in non neuronal cells. Through RNA affinity chromatographic assays using zebrafish and murine lysates I was able to isolate and identify proteins that interact specifically with pre-miR-26 and could by this influence its biogenesis. Potential candidates are FMRP/FXR1/2, ZNF346 and Eral1, whose functional characterisation in the context of miR-biogenesis could now be addressed. The second part of my thesis was executed in close colaboration with the laboratory of Prof. Albrecht M{\"u}ller. The principal question was addressed how miR-26 influences neuronal gene expression and which genes are primarily affected. This research question could be addressed by using a cell culture model system, which mimics ex vivo the differentiation of ESCs to NCs via neuronal progenitor. For the functional analysis of miR-26 knock out cell lines were generated by the CRISPR/Cas9 technology. miR-26 deficient ESC keep their pluripotent state and are able to develop NPC, but show major impairment in differentiating to NCs. Through RNA deep sequencing the miR-26 induced transcriptome differences could be analysed. On the level of mRNAs it could be shown, that the expression of neuronal gene is downregulated in miR-26 deficient NCs. Interestingly, the deletion of miR-26 leads to selectively decreased levels of miRs, which on one hand regulate the REST complex and on the other hand are under transcriptional control by REST themself. This data and the discovery that induction of miR-26 leads to enrichment of other REST regulating miRs indicates that miR-26 initiates neurogenesis through stepwise inactivation of the REST complex.}, subject = {miRNS}, language = {en} } @phdthesis{Zidorn2012, author = {Zidorn, Wilfried}, title = {Alliances and R\&D activites in the Biotechnology Industry}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75483}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {This dissertation is divided into three studies by addressing the following constitutive research questions in the context of the biotechnology industry: (1) How do different types of inter-firm alliances influence a firm's R\&D activity? (2) How does an increasing number and diversity of alliances in a firm's alliance portfolio affect its R\&D activity? (3) What is the optimal balance between exploration and exploitation? (1) To answer these research questions the first main chapter analyzes the impact of different types of alliances on the R\&D activities of successful firms in the biotechnology industry. Following the use of a new approach to measuring changes in research activities, the results show that alliances are used to specialize in a certain research field, rather than to enter a completely new market. This effect becomes smaller when the equity involvement of the partners in the alliance project increases. (2) The second main chapter analyzes the impact on innovation output of having heterogeneous partners in a biotechnology firm's alliance portfolio. Previous literature has stressed that investment in the heterogeneity of partners in an alliance portfolio is more important than merely engaging in multiple collaborative agreements. The analysis of a unique panel dataset of 20 biotechnology firms and their 8,602 alliances suggests that engaging in many alliances generally has a positive influence on a firm's innovation output. Furthermore, maintaining diverse alliance portfolios has an inverted U-shaped influence on a firm's innovation output, as managerial costs and complexity levels become too high. (3) And the third main chapter investigates whether there is an optimal balance to be found between explorative and exploitative innovation strategies. Previous literature states that firms that are ambidextrous (i.e., able to focus on exploration and exploitation simultaneously) tend to be more successful. Using a unique panel dataset of 20 leading biotechnology firms and separating their explorative and exploitative research, the chapter suggests that firms seeking to increase their innovation output should avoid imbalances between their explorative and exploitative innovation strategies. Furthermore, an inverted U-shaped relationship between a firm's relative research attention on exploration and its innovation output is found. This dissertation concludes with the results of the dissertation, combines the findings, gives managerial implications and proposes areas for potential further research.}, subject = {Biotechnologische Industrie}, language = {en} }