@article{WilliamsChagtaiAlcaideGermanetal.2015, author = {Williams, Richard D. and Chagtai, Tasnim and Alcaide-German, Marisa and Apps, John and Wegert, Jenny and Popov, Sergey and Vujanic, Gordan and Van Tinteren, Harm and Van den Heuvel-Eibrink, Marry M and Kool, Marcel and De Kraker, Jan and Gisselsson, David and Graf, Norbert and Gessler, Manfred and Pritchard-Jones, Kathy}, title = {Multiple mechanisms of MYCN dysregulation in Wilms tumour}, series = {Oncotarget}, volume = {6}, journal = {Oncotarget}, number = {9}, doi = {10.18632/oncotarget.3377}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-143471}, pages = {7232-7243}, year = {2015}, abstract = {Genomic gain of the proto-oncogene transcription factor gene MYCN is associated with poor prognosis in several childhood cancers. Here we present a comprehensive copy number analysis of MYCN in Wilms tumour (WT), demonstrating that gain of this gene is associated with anaplasia and with poorer relapse-free and overall survival, independent of histology. Using whole exome and gene-specific sequencing, together with methylation and expression profiling, we show that MYCN is targeted by other mechanisms, including a recurrent somatic mutation, P44L, and specific DNA hypomethylation events associated with MYCN overexpression in tumours with high risk histologies. We describe parallel evolution of genomic copy number gain and point mutation of MYCN in the contralateral tumours of a remarkable bilateral case in which independent contralateral mutations of TP53 also evolve over time. We report a second bilateral case in which MYCN gain is a germline aberration. Our results suggest a significant role for MYCN dysregulation in the molecular biology of Wilms tumour. We conclude that MYCN gain is prognostically significant, and suggest that the novel P44L somatic variant is likely to be an activating mutation.}, language = {en} } @article{WalterReilichThieleetal.2013, author = {Walter, Maggie C. and Reilich, Peter and Thiele, Simone and Schessl, Joachim and Schreiber, Herbert and Reiners, Karlheinz and Kress, Wolfram and M{\"u}ller-Reible, Clemens and Vorgerd, Matthias and Urban, Peter and Schrank, Bertold and Deschauer, Marcus and Schlotter-Weigel, Beate and Kohnen, Ralf and Lochm{\"u}ller, Hans}, title = {Treatment of dysferlinopathy with deflazacort: a double-blind, placebo-controlled clinical trial}, series = {Orphanet Journal of Rare Diseases}, volume = {8}, journal = {Orphanet Journal of Rare Diseases}, number = {26}, issn = {1750-1172}, doi = {10.1186/1750-1172-8-26}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125663}, year = {2013}, abstract = {Background: Dysferlinopathies are autosomal recessive disorders caused by mutations in the dysferlin (DYSF) gene encoding the dysferlin protein. DYSF mutations lead to a wide range of muscular phenotypes, with the most prominent being Miyoshi myopathy (MM) and limb girdle muscular dystrophy type 2B (LGMD2B). Methods: We assessed the one-year-natural course of dysferlinopathy, and the safety and efficacy of deflazacort treatment in a double-blind, placebo-controlled cross-over trial. After one year of natural course without intervention, 25 patients with genetically defined dysferlinopathy were randomized to receive deflazacort and placebo for six months each (1 mg/kg/day in month one, 1 mg/kg every 2nd day during months two to six) in one of two treatment sequences. Results: During one year of natural course, muscle strength declined about 2\% as measured by CIDD (Clinical Investigation of Duchenne Dystrophy) score, and 76 Newton as measured by hand-held dynamometry. Deflazacort did not improve muscle strength. In contrast, there is a trend of worsening muscle strength under deflazacort treatment, which recovers after discontinuation of the study drug. During deflazacort treatment, patients showed a broad spectrum of steroid side effects. Conclusion: Deflazacort is not an effective therapy for dysferlinopathies, and off-label use is not warranted. This is an important finding, since steroid treatment should not be administered in patients with dysferlinopathy, who may be often misdiagnosed as polymyositis.}, language = {en} } @article{VonaMazaheriLinetal.2021, author = {Vona, Barbara and Mazaheri, Neda and Lin, Sheng-Jia and Dunbar, Lucy A. and Maroofian, Reza and Azaiez, Hela and Booth, Kevin T. and Vitry, Sandrine and Rad, Aboulfazl and R{\"u}schendorf, Franz and Varshney, Pratishtha and Fowler, Ben and Beetz, Christian and Alagramam, Kumar N. and Murphy, David and Shariati, Gholamreza and Sedaghat, Alireza and Houlden, Henry and Petree, Cassidy and VijayKumar, Shruthi and Smith, Richard J. H. and Haaf, Thomas and El-Amraoui, Aziz and Bowl, Michael R. and Varshney, Gaurav K. and Galehdari, Hamid}, title = {A biallelic variant in CLRN2 causes non-syndromic hearing loss in humans}, series = {Human Genetics}, volume = {140}, journal = {Human Genetics}, number = {6}, issn = {1432-1203}, doi = {10.1007/s00439-020-02254-z}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-267740}, pages = {915-931}, year = {2021}, abstract = {Deafness, the most frequent sensory deficit in humans, is extremely heterogeneous with hundreds of genes involved. Clinical and genetic analyses of an extended consanguineous family with pre-lingual, moderate-to-profound autosomal recessive sensorineural hearing loss, allowed us to identify CLRN2, encoding a tetraspan protein, as a new deafness gene. Homozygosity mapping followed by exome sequencing identified a 14.96 Mb locus on chromosome 4p15.32p15.1 containing a likely pathogenic missense variant in CLRN2 (c.494C > A, NM_001079827.2) segregating with the disease. Using in vitro RNA splicing analysis, we show that the CLRN2 c.494C > A variant leads to two events: (1) the substitution of a highly conserved threonine (uncharged amino acid) to lysine (charged amino acid) at position 165, p.(Thr165Lys), and (2) aberrant splicing, with the retention of intron 2 resulting in a stop codon after 26 additional amino acids, p.(Gly146Lysfs*26). Expression studies and phenotyping of newly produced zebrafish and mouse models deficient for clarin 2 further confirm that clarin 2, expressed in the inner ear hair cells, is essential for normal organization and maintenance of the auditory hair bundles, and for hearing function. Together, our findings identify CLRN2 as a new deafness gene, which will impact future diagnosis and treatment for deaf patients.}, language = {en} } @article{VieiraJonesDanonetal.2012, author = {Vieira, Jacqueline and Jones, Alex R. and Danon, Antoine and Sakuma, Michiyo and Hoang, Nathalie and Robles, David and Tait, Shirley and Heyes, Derren J. and Picot, Marie and Yoshii, Taishi and Helfrich-F{\"o}rster, Charlotte and Soubigou, Guillaume and Coppee, Jean-Yves and Klarsfeld, Andr{\´e} and Rouyer, Francois and Scrutton, Nigel S. and Ahmad, Margaret}, title = {Human Cryptochrome-1 Confers Light Independent Biological Activity in Transgenic Drosophila Correlated with Flavin Radical Stability}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {3}, doi = {10.1371/journal.pone.0031867}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134513}, pages = {e31867}, year = {2012}, abstract = {Cryptochromes are conserved flavoprotein receptors found throughout the biological kingdom with diversified roles in plant development and entrainment of the circadian clock in animals. Light perception is proposed to occur through flavin radical formation that correlates with biological activity in vivo in both plants and Drosophila. By contrast, mammalian (Type II) cryptochromes regulate the circadian clock independently of light, raising the fundamental question of whether mammalian cryptochromes have evolved entirely distinct signaling mechanisms. Here we show by developmental and transcriptome analysis that Homo sapiens cryptochrome - 1 (HsCRY1) confers biological activity in transgenic expressing Drosophila in darkness, that can in some cases be further stimulated by light. In contrast to all other cryptochromes, purified recombinant HsCRY1 protein was stably isolated in the anionic radical flavin state, containing only a small proportion of oxidized flavin which could be reduced by illumination. We conclude that animal Type I and Type II cryptochromes may both have signaling mechanisms involving formation of a flavin radical signaling state, and that light independent activity of Type II cryptochromes is a consequence of dark accumulation of this redox form in vivo rather than of a fundamental difference in signaling mechanism.}, language = {en} } @article{vanDintherZhangWeidaueretal.2013, author = {van Dinther, Maarten and Zhang, Juan and Weidauer, Stella E. and Boschert, Verena and Muth, Eva-Maria and Knappik, Achim and de Gorter, David J. J. and van Kasteren, Puck B. and Frisch, Christian and M{\"u}ller, Thomas D. and ten Dijke, Peter}, title = {Anti-Sclerostin Antibody Inhibits Internalization of Sclerostin and Sclerostin-Mediated Antagonism of Wnt/LRP6 Signaling}, series = {PLoS ONE}, volume = {8}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0062295}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-130981}, pages = {e62295}, year = {2013}, abstract = {Sclerosteosis is a rare high bone mass disease that is caused by inactivating mutations in the SOST gene. Its gene product, Sclerostin, is a key negative regulator of bone formation and might therefore serve as a target for the anabolic treatment of osteoporosis. The exact molecular mechanism by which Sclerostin exerts its antagonistic effects on Wnt signaling in bone forming osteoblasts remains unclear. Here we show that Wnt3a-induced transcriptional responses and induction of alkaline phosphatase activity, an early marker of osteoblast differentiation, require the Wnt co-receptors LRP5 and LRP6. Unlike Dickkopf1 (DKK1), Sclerostin does not inhibit Wnt-3a-induced phosphorylation of LRP5 at serine 1503 or LRP6 at serine 1490. Affinity labeling of cell surface proteins with \([^{125} I]\) Sclerostin identified LRP6 as the main specific Sclerostin receptor in multiple mesenchymal cell lines. When cells were challenged with Sclerostin fused to recombinant green fluorescent protein (GFP) this was internalized, likely via a Clathrin-dependent process, and subsequently degraded in a temperature and proteasome-dependent manner. Ectopic expression of LRP6 greatly enhanced binding and cellular uptake of Sclerostin-GFP, which was reduced by the addition of an excess of non-GFP-fused Sclerostin. Finally, an anti-Sclerostin antibody inhibited the internalization of Sclerostin-GFP and binding of Sclerostin to LRP6. Moreover, this antibody attenuated the antagonistic activity of Sclerostin on canonical Wnt-induced responses.}, language = {en} } @article{VandeKerkhofFeenstravanderHeijdenetal.2012, author = {Van de Kerkhof, Noortje W. A. and Feenstra, Ilse and van der Heijden, Frank M. M. A. and de Leeuw, Nicole and Pfundt, Rolph and St{\"o}ber, Gerald and Egger, Jos I. M. and Verhoeven, Willem M. A.}, title = {Copy number variants in a sample of patients with psychotic disorders: is standard screening relevant for actual clinical practice?}, series = {Neuropsychiatric Disease and Treatment}, volume = {8}, journal = {Neuropsychiatric Disease and Treatment}, doi = {10.2147/NDT.S32903}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134769}, pages = {295-300}, year = {2012}, abstract = {With the introduction of new genetic techniques such as genome-wide array comparative genomic hybridization, studies on the putative genetic etiology of schizophrenia have focused on the detection of copy number variants (CNVs), ie, microdeletions and/or microduplications, that are estimated to be present in up to 3\% of patients with schizophrenia. In this study, out of a sample of 100 patients with psychotic disorders, 80 were investigated by array for the presence of CNVs. The assessment of the severity of psychiatric symptoms was performed using standardized instruments and ICD-10 was applied for diagnostic classification. In three patients, a submicroscopic CNV was demonstrated, one with a loss in 1q21.1 and two with a gain in 1p13.3 and 7q11.2, respectively. The association between these or other CNVs and schizophrenia or schizophrenia-like psychoses and their clinical implications still remain equivocal. While the CNV affected genes may enhance the vulnerability for psychiatric disorders via effects on neuronal architecture, these insights have not resulted in major changes in clinical practice as yet. Therefore, genome-wide array analysis should presently be restricted to those patients in whom psychotic symptoms are paired with other signs, particularly dysmorphisms and intellectual impairment.}, language = {en} } @article{SzaboPapinZornetal.2013, author = {Szab{\´o}, {\´A}ron and Papin, Christian and Zorn, Daniela and Ponien, Prishila and Weber, Frank and Raabe, Thomas and Rouyer, Fran{\c{c}}ois}, title = {The CK2 Kinase Stabilizes CLOCK and Represses Its Activity in the Drosophila Circadian Oscillator}, series = {PLoS Biology}, volume = {11}, journal = {PLoS Biology}, number = {8}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1001645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-127234}, pages = {e1001645}, year = {2013}, abstract = {Phosphorylation is a pivotal regulatory mechanism for protein stability and activity in circadian clocks regardless of their evolutionary origin. It determines the speed and strength of molecular oscillations by acting on transcriptional activators and their repressors, which form negative feedback loops. In Drosophila, the CK2 kinase phosphorylates and destabilizes the PERIOD (PER) and TIMELESS (TIM) proteins, which inhibit CLOCK (CLK) transcriptional activity. Here we show that CK2 also targets the CLK activator directly. Downregulating the activity of the catalytic alpha subunit of CK2 induces CLK degradation, even in the absence of PER and TIM. Unexpectedly, the regulatory beta subunit of the CK2 holoenzyme is not required for the regulation of CLK stability. In addition, downregulation of \(CK2\alpha\) activity decreases CLK phosphorylation and increases per and tim transcription. These results indicate that CK2 inhibits CLK degradation while reducing its activity. Since the CK1 kinase promotes CLK degradation, we suggest that CLK stability and transcriptional activity result from counteracting effects of CK1 and CK2.}, language = {en} } @article{SchartlShenMaurusetal.2015, author = {Schartl, Manfred and Shen, Yingjia and Maurus, Katja and Walter, Ron and Tomlinson, Chad and Wilson, Richard K. and Postlethwait, John and Warren, Wesley C.}, title = {Whole body melanoma transcriptome response in medaka}, series = {PLoS ONE}, volume = {10}, journal = {PLoS ONE}, number = {12}, doi = {10.1371/journal.pone.0143057}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-144714}, pages = {e0143057}, year = {2015}, abstract = {The incidence of malignant melanoma continues to increase each year with poor prognosis for survival in many relapse cases. To reverse this trend, whole body response measures are needed to discover collaborative paths to primary and secondary malignancy. Several species of fish provide excellent melanoma models because fish and human melanocytes both appear in the epidermis, and fish and human pigment cell tumors share conserved gene expression signatures. For the first time, we have examined the whole body transcriptome response to invasive melanoma as a prelude to using transcriptome profiling to screen for drugs in a medaka (Oryzias latipes) model. We generated RNA-seq data from whole body RNA isolates for controls and melanoma fish. After testing for differential expression, 396 genes had significantly different expression (adjusted p-value <0.02) in the whole body transcriptome between melanoma and control fish; 379 of these genes were matched to human orthologs with 233 having annotated human gene symbols and 14 matched genes that contain putative deleterious variants in human melanoma at varying levels of recurrence. A detailed canonical pathway evaluation for significant enrichment showed the top scoring pathway to be antigen presentation but also included the expected melanocyte development and pigmentation signaling pathway. Results revealed a profound down-regulation of genes involved in the immune response, especially the innate immune system. We hypothesize that the developing melanoma actively suppresses the immune system responses of the body in reacting to the invasive malignancy, and that this mal-adaptive response contributes to disease progression, a result that suggests our whole-body transcriptomic approach merits further use. In these findings, we also observed novel genes not yet identified in human melanoma expression studies and uncovered known and new candidate drug targets for further testing in this malignant melanoma medaka model.}, language = {en} } @article{RouhigharabaeiFerreiroTousseynetal.2014, author = {Rouhigharabaei, Leila and Ferreiro, Julio Finalet and Tousseyn, Thomas and van der Krogt, Jo-Anne and Put, Natalie and Haralambieva, Eugenia and Graux, Carlos and Maes, Brigitte and Vicente, Carmen and Vandenberghe, Peter and Cools, Jan and Wlodarska, Iwona}, title = {Non-IG Aberrations of FOXP1 in B-Cell Malignancies Lead to an Aberrant Expression of N-Truncated Isoforms of FOXP1}, series = {PLOS ONE}, volume = {9}, journal = {PLOS ONE}, number = {1}, issn = {1932-6203}, doi = {10.1371/journal.pone.0085851}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117679}, pages = {e85851}, year = {2014}, abstract = {The transcription factor FOXP1 is implicated in the pathogenesis of B-cell lymphomas through chromosomal translocations involving either immunoglobulin heavy chain (IGH) locus or non-IG sequences. The former translocation, t(3; 14)(p13; q32), results in dysregulated expression of FOXP1 juxtaposed with strong regulatory elements of IGH. Thus far, molecular consequences of rare non-IG aberrations of FOXP1 remain undetermined. Here, using molecular cytogenetics and molecular biology studies, we comprehensively analyzed four lymphoma cases with non-IG rearrangements of FOXP1 and compared these with cases harboring t(3; 14)(p13; q32)/IGH-FOXP1 and FOXP1-expressing lymphomas with no apparent structural aberrations of the gene. Our study revealed that non-IG rearrangements of FOXP1 are usually acquired during clinical course of various lymphoma subtypes, including diffuse large B cell lymphoma, marginal zone lymphoma and chronic lymphocytic leukemia, and correlate with a poor prognosis. Importantly, these aberrations constantly target the coding region of FOXP1, promiscuously fusing with coding and non-coding gene sequences at various reciprocal breakpoints (2q36, 10q24 and 3q11). The non-IG rearrangements of FOXP1, however, do not generate functional chimeric genes but commonly disrupt the full-length FOXP1 transcript leading to an aberrant expression of N-truncated FOXP1 isoforms (FOXP1NT), as shown by QRT-PCR and Western blot analysis. In contrast, t(3; 14)(p13; q32)/IGH-FOXP1 affects the 59 untranslated region of FOXP1 and results in overexpress the full-length FOXP1 protein (FOXP1FL). RNA-sequencing of a few lymphoma cases expressing FOXP1NT and FOXP1FL detected neither FOXP1-related fusions nor FOXP1 mutations. Further bioinformatic analysis of RNA-sequencing data retrieved a set of genes, which may comprise direct or non-direct targets of FOXP1NT, potentially implicated in disease progression. In summary, our findings point to a dual mechanism through which FOXP1 is implicated in B-cell lymphomagenesis. We hypothesize that the primary t(3; 14)(p13; q32)/IGH-FOXP1 activates expression of the FOXP1FL protein with potent oncogenic activity, whereas the secondary non-IG rearrangements of FOXP1 promote expression of the FOXP1NT proteins, likely driving progression of disease.}, language = {en} } @article{RoeslerSegererMorbachetal.2012, author = {Roesler, Joachim and Segerer, Florian and Morbach, Henner and Kleinert, Stefan and Thieme, Sebastian and R{\"o}sen-Wolff, Angela and Liese, Johannes G.}, title = {P67-phox (NCF2) Lacking Exons 11 and 12 Is Functionally Active and Leads to an Extremely Late Diagnosis of Chronic Granulomatous Disease (CGD)}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {4}, doi = {10.1371/journal.pone.0034296}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-134948}, pages = {e34296}, year = {2012}, abstract = {Two brothers in their fifties presented with a medical history of suspected fungal allergy, allergic bronchopulmonary aspergillosis, alveolitis, and invasive aspergillosis and pulmonary fistula, respectively. Eventually, after a delay of 50 years, chronic granulomatous disease (CGD) was diagnosed in the index patient. We found a new splice mutation in the NCF2 (p67-phox) gene, c.1000+2T -> G, that led to several splice products one of which lacked exons 11 and 12. This deletion was in frame and allowed for remarkable residual NADPH oxidase activity as determined by transduction experiments using a retroviral vector. We conclude that p67-phox which lacks the 34 amino acids encoded by the two exons can still exert considerable functional activity. This activity can partially explain the long-term survival of the patients without adequate diagnosis and treatment, but could not prevent progressing lung damage.}, language = {en} }