@phdthesis{Schaefer2020, author = {Sch{\"a}fer, Nadine}, title = {Eine vergleichende biophysikalische Analyse von Hitze- und Trockentoleranzstrategien der W{\"u}stenpflanze Phoenix dactylifera und Nutzpflanzen der gemäßigten Klimazonen}, doi = {10.25972/OPUS-18649}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-186491}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Der Klimawandel geht einher mit einem Anstieg der globalen Durchschnittstemperatur und einem dadurch induzierten Wassermangel. Diese beiden abiotischen Stressfaktoren f{\"u}hren zu einer Reduzierung der landwirtschaftlichen Erträge und Biomassen von Kulturpflanzen. Daher ist eine Anpassung der betroffenen Pflanzenarten an das sich ändernde Klima erforderlich, um die landwirtschaftliche Produktivität in Zukunft aufrechtzuerhalten. Gegenwärtig ist unser Wissen {\"u}ber Strategien zur Toleranz gegen{\"u}ber abiotischem Stress sowie {\"u}ber Genom- und Transkriptionsinformationen auf wenige Modellorganismen von Angiospermen beschränkt, so dass diese Informationen die Basis f{\"u}r die Forschung an Trockenheit und Hitzestress darstellen. Die Untersuchung der Stressadaption innerhalb und zwischen verschiedenen Pflanzengattungen ist von besonderer Relevanz. Vor diesem Hintergrund habe ich im Rahmen meiner Doktorarbeit die Überlebensstrategie der extremophilen W{\"u}stenpflanze Phoenix dactylifera (Dattelpalme) im Vergleich zu zwei Mesophilen, der Kulturpflanze Hordeum vulgare (Gerste) und der Modellpflanze Arabidopsis thaliana, untersucht. Dattelpalmen sind nicht sukkulente W{\"u}stenpflanzen, die auch unter extremen Trocken- und Hitzebedingungen in den W{\"u}sten der Arabischen Halbinsel wachsen und ertragreich Fr{\"u}chte produzieren. In Phoenix dactylifera ist bislang weder die Molekularbiologie und -physiologie der Schließzellen, vor allem der Anionenkanäle, verstanden, noch wurde der Hitzeschutz ihrer Zuckertransportproteine untersucht. Um die stomatäre Reaktion auf das Trockenstresshormon ABA (Abscisinsäure) zu verstehen, klonierten wir die Hauptkomponenten des schnellen ABA-Signalwegs von Schließzellen und analysierten den Öffnungsmechanismus der Anionenkanäle aus der Dattelpalme und der Gerste vergleichend zu dem Anionenkanal aus Arabidopsis im heterologen Expressionssystem der Xenopus Oozyten. Beide monokotyledonen Pflanzenarten (Gerste und Dattelpalme) besitzen stomatäre Komplexe, die aus Schließzellen und Nebenzellen bestehen. Dies unterscheidet die Monokotyledonen von den Dikotyledonen, die normalerweise Stomakomplexe aufweisen, die nur aus einem Paar Schließzellen gebildet werden. Interessanterweise schlossen sich Dattelpalmen- und Gerstenstomata als Reaktion auf das Trockenstresshormon ABA nur in Gegenwart von extrazellulärem Nitrat. Der heterolog-exprimierte Anionenkanal PdSLAC1 wird durch die ABA-Kinase PdOST1 aktiviert und diese Aktivierung wird durch die Koexpression der PP2C-Phosphatase ABI1 gehemmt. Daher wird PdSLAC1 wie seine Orthologen aus Gerste und Arabidopsis durch ein ABA-abhängiges Phosphorylierungs-/Dephosphorylierungsnetzwerk gesteuert. PdOST1 aktivierte den Anionenkanal PdSLAC1 jedoch nur in Gegenwart von extrazellulärem Nitrat - eine elektrische Eigenschaft, die PdSLAC1 mit HvSLAC1 der Gerste gemein hat, sich jedoch von AtSLAC1 unterscheidet. Angesichts der Tatsache, dass in Gegenwart von Nitrat ABA den Stomaschluss verstärkt und beschleunigt, deuten unsere Ergebnisse darauf hin, dass bei Dattelpalmen und Gerste Nitrat als Ligand zum Öffnen von SLAC1 benötigt wird. Dies initiiert die Depolarisation der Schließzellen und leitet schließlich den Stomaschluss ein, um den Wasserverlust der Pflanzen unter Trockenstressbedingungen zu minimieren. Um die monokotyledone spezifische Nitratabhängigkeit von SLAC1 zu verstehen, f{\"u}hrten wir ortsgerichtete Mutagenesestudien auf Basis eines 3D-Modells durch, welche zudem vergleichende Studien an Chimären von Monokotylen- und Dikotylen-SLAC1 Anionenkanälen umfassten. Unsere Struktur-Funktions-Forschung identifizierte zwei Aminosäurenreste auf der Transmembrandomäne 3 (TMD3), die eine wesentliche Rolle bei der Nitrat-abhängigen Regulierung von SLAC1 Anionenkanälen monokotyledoner Pflanzen spielen. Die phylogenetische Analyse ergab schließlich, dass während der Evolution die f{\"u}r Monokotlyedonen spezifische Nitrat-abhängige Regulierung erst nach der Trennung in Monokotyledonen und Dikotyledonen auftrat. Durch die Nitrat-sensitive Regulierung von SLAC1 Anionenkanälen beruht der schnelle Stomaschluss von Monokotyledonen auf dem Zusammenspiel des Trockenstresshormons ABA und dem Stickstoffhaushalt der Pflanze. Da der ABA-Signalweg von Arabidopsis umfassend untersucht wurde, könnte die Entdeckung des monokotyledonen spezifischen Nitrat-abhängigen Motivs in TMD3 nun als Stellschraube zur Verbesserung der Z{\"u}chtungsprogramme dikotyledoner Nutzpflanzen dienen. W{\"u}stenpflanzen leiden nicht nur unter Trockenheit, sondern auch unter extremem Hitzestress. Wir konnten zeigen, dass hitzebelastete Dattelpalmen große Mengen der fl{\"u}chtigen Kohlenwasserstoffverbindung Isopren (2-Methyl-1,3-Butadien) produzieren und emittieren. Durch die vor{\"u}bergehende Freisetzung von Isopren kann die Pflanze die Photosynthese auch bei extremen Temperaturen betreiben. Es ist jedoch nicht bekannt, ob und wie Isopren in Hitzeperioden auch Transportprozesse durch biologische Membranen sch{\"u}tzt. Um den Einfluss von Isopren auf den Transmembrantransport zu untersuchen, identifizierten und klonierten wir den Protonen-gekoppelten Saccharosetransporter 1 (PdSUT1) der Dattelpalme und verglichen seine elektrischen Eigenschaften mit ZmSUT1 (Zea mays Sucrose Transporter 1) im heterologen Expressionssystem der Xenopus Oozyten. Interessanterweise waren das elektrische Verhalten, die kinetischen Eigenschaften und die Temperaturabhängigkeit beider Transporter ähnlich. Die Anwendung von Isopren veränderte jedoch massiv die Affinität von ZmSUT1 zu seinem Substrat Saccharose, während die Affinität des Transporters der Dattelpalme nur schwach beeinflusst wurde. Es wird angenommen, dass die Membranfluidität unter Hitzestress erniedrigt ist, welches durch Interkalierung von Isopren mit den Fettsäureketten biologischer Membrane einhergeht. Dies und die Unempfindlichkeit von PdSUT1 gegen{\"u}ber Isopren deuten darauf hin, dass der Saccharosetransporter PdSUT1 aus der W{\"u}stenpflanze auch bei hohen Temperaturen Saccharose mit hoher Affinität transportiert. Zuk{\"u}nftige Studien m{\"u}ssen nun klären, ob der fl{\"u}chtige Kohlenwasserstoff Isopren einen direkten Einfluss auf den Transporter selbst hat oder Isopren in die Membran integriert und damit indirekt die Eigenschaften von Transportproteinen beeinflusst. Unabhängig von der Wirkungsweise von Isopren sollte nicht unerwähnt bleiben, dass PdSUT1 gegen{\"u}ber Isopren weniger empfindlich ist als sein Ortholog ZmSUT1 aus Mais. Dies kann auf eine Anpassung des Saccharosetransporters an die extremen Hitzeperioden und die damit einhergehende Isoprenemission von Dattelpalmen zur{\"u}ckzuf{\"u}hren sein.}, subject = {Dattelpalme}, language = {de} } @phdthesis{Maierhofer2012, author = {Maierhofer, Tobias}, title = {Funktionelle Charakterisierung von SLAC1-homologen Anionenkan{\"a}len aus Arabidopsis thaliana}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85406}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {S-Typ (slow)-Anionenkan{\"a}le vermitteln in Schließzellen den Efflux von Chlorid und Nitrat, welcher letztendlich zum Schließen der Stomata, z.B. als Antwort auf Trockenstress, f{\"u}hrt. Dabei kommt dem Phytohormon Abscisins{\"a}ure (ABA) eine zentrale Rolle zu. Es wird als Antwort auf Trockenheit synthetisiert und vermittelt {\"u}ber eine schnelle ABA-Signaltransduktionskette die Aktivierung von S-typ Anionenkan{\"a}len. SLAC1 war die erste Komponente eines S-Typ-Anionenkanals, die in Schließzellen identifiziert wurde. Durch die Expression in Xenopus Oozyten, konnte SLAC1 als S-Typ-Anionenkanal funktionell charakterisiert werden und seine Regulation {\"u}ber Kinasen (OST1, CPK21/23) und Phosphatasen (ABI1, ABI2) beschrieben werden. Mit diesen Untersuchungen gelang ein entscheidender Durchbruch bei der Entschl{\"u}sselung von Netzwerken, welche den Anionentransport in Schließzellen als Antwort auf Trockenstress regulieren. Im Laufe dieser Arbeit konnte in Schließzellen von Arabidopsis auch die Expression des SLAC1 Homolog 3 (SLAH3) nachgewiesen werden. Die Koexpression von SLAH3 mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 in Xenopus Oozyten f{\"u}hrte zu Nitrat-induzierten Anionenstr{\"o}men. Dabei wurde die Aktivit{\"a}t dieses S-Typ-Anionenkanals, sowohl durch Phosphorylierung, als auch durch Kalzium und Nitrat gesteuert. {\"A}hnlich wie bei der Regulation von SLAC1 konnte die Aktivit{\"a}t von SLAH3 durch die Proteinphosphatase ABI1, aus der Familie der PP2Cs, blockiert werden. Diese Eigenschaft von ABI1 passt sehr gut zur bekannten Rolle dieser Phosphatase in Schließzellen: ABI1 ist ein negativer Regulator der ABA-Signalkaskade und wird durch ABA inhibiert. Unsere biophysikalischen Analysen f{\"u}hrten schließlich zur Rekonstitution des schnellen ABA-Signaltransduktionsweges. Die Bindung von ABA an den Komplex aus ABA-Rezeptor (RCAR/PYL/PYR) und ABI1 bewirkt die Inaktivierung von ABI1 und somit die Aktivierung von CPK21. F{\"u}r deren volle Aktivit{\"a}t ist eine ABA-abh{\"a}ngige Erh{\"o}hung der zytosolischen Ca2+-Konzentration notwendig. Die aktivierte Kinase CPK21 ist schließlich in der Lage, den Anionenkanal SLAH3 zu phosphorylieren und in der Anwesenheit von Nitrat zu aktivieren. Somit liefert die Identifizierung und Charakterisierung von SLAH3, als den Nitrat-, Kalzium- und ABA-sensitiven Anionenkanal in Schließzellen, Einblicke in die Beziehung zwischen der Reaktion dieses Zelltyps auf Trockenstress, der Funktion von Nitrat als Signalmolek{\"u}l und dem Nitratmetabolismus. F{\"u}r die meisten h{\"o}heren Pflanzen stellt Nitrat die wichtigste Stickstoffquelle dar. Die Nitrataufnahme {\"u}ber die Wurzel repr{\"a}sentiert daher den entscheidenden Schritt f{\"u}r den Stickstoff-Metabolismus. Ausgehend von den Zellen des Wurzelkortex muss das Nitrat f{\"u}r den Langstreckentransport in die oberen Pflanzenorgane, in die Xylemgef{\"a}ße der Stele eingebracht werden. Die Identifikation von Proteinen und Genen, die f{\"u}r den Nitrattransport verantwortlich sind, ist f{\"u}r das Verst{\"a}ndnis der Nitrataufnahme und -verteilung in der Pflanze eine Grundvoraussetzung. Dabei scheinen Protonen-gekoppelte Transporter der NRT1-, bzw. NRT2-Klasse, die Verschiebung von Nitrat aus dem Boden in die Wurzeln zu bewerkstelligen. Aus der Endodermis, bzw. den Xylem-Parenchymzellen muss Nitrat anschließend in das extrazellul{\"a}re Medium der Xylemgef{\"a}ße freigegeben werden, um {\"u}ber den Transpirationssog in den Spross zu gelangen. Auch am Transport dieses Anions in das Xylem ist mit NRT1.5 ein Nitrattransporter der NRT1-Klasse beteiligt, jedoch ergaben Experimente an NRT1.5-Verlustmutanten, dass weitere Transportmechanismen f{\"u}r den Efflux von Nitrat in das Xylem existieren m{\"u}ssen. Im Rahmen dieser Doktorarbeit konnte das SLAC1-Homolog 2 (SLAH2) funktionell in Xenopus Oozyten exprimiert werden. Mit Hilfe der BIFC-Methode wurde gezeigt, dass dabei die Interaktion mit der Ca2+-abh{\"a}ngigen Proteinkinase CPK21 essentiell ist. Elektrophysiologische Experimente verdeutlichten, dass SLAH2 einen Nitrat-selektiven S-Typ-Anionenkanal repr{\"a}sentiert, dessen Aktivit{\"a}t gleichzeitig durch die Anwesenheit eben dieses Anions im externen Medium reguliert wird. Durch die Promoter:GUS-Technik gelang es, die Lokalisation von SLAH2 exklusiv in den Zellen der Wurzelstele von Arabidopsis nachzuweisen. Aufgrund des stark negativen Membranpotentials pflanzlicher Zellen und der vorliegenden Anionengradienten, d{\"u}rften Anionenkan{\"a}le in erster Linie den Ausstrom von Anionen vermitteln. Da in Nitrat-Aufnahme-Experimenten an SLAH2-Verlustmutanten, im Vergleich zu Wildtyp-Pflanzen, ein geringerer Nitratgehalt im Spross, dagegen eine h{\"o}here Konzentration dieses Anions in den Wurzeln zu detektieren war, scheint der S-Typ-Anionenkanal SLAH2 am Transport von Nitrat aus den Wurzeln in die Bl{\"a}tter beteiligt zu sein. Dabei k{\"o}nnte er entweder direkt an der Beladung des Xylems mit Nitrat mitwirken, oder diese durch seine potentielle Funktion als Nitratsensor regulieren.}, subject = {Ackerschmalwand}, language = {de} } @phdthesis{Lind2016, author = {Lind, Christof Martin}, title = {W{\"a}hrend der Evolution von Landpflanzen geriet der Anionenkanal SLAC1 unter die Kontrolle des ABA-Signalwegs}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-141669}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {Die ersten Landpflanzen standen vor der Herausforderung sich mit der wechselnden Verf{\"u}gbarkeit von Wasser an Land arrangieren zu m{\"u}ssen. Daraus ergab sich die Notwendigkeit den Wasserverlust zu minimieren und dennoch ausreichend CO2 f{\"u}r die Photosynthese aufzunehmen (Raven, 2002). Im Laufe der Evolution der Pflanzen entstanden mehrere Anpassungen an diese neuen Gegebenheiten, die schließlich auch zur Entstehung von regulierbaren {\"O}ffnungen, den Stomata, in der Blattepidermis f{\"u}hrte. Zwei Schließzellen umschließen das Stoma und regulieren {\"u}ber die Aufnahme oder Abgabe von osmotisch-aktiven Teilchen ihren Turgordruck und damit die {\"O}ffnungsweite des Stomas. Das Kation Kalium und die Anionen Chlorid und Nitrat repr{\"a}sentieren die Hauptosmotika, die je nach Bedarf durch Transportproteine {\"u}ber die Plasmamembran der Schließzellen geschleust werden. In den Samenpflanzen wie zum Beispiel der Modellpflanze Arabidopsis thaliana, ist der Signalweg in Schließzellen, der bei Trockenheit zu einem schnellen Schluss des Stomas f{\"u}hrt bereits sehr gut untersucht. Bei Wassermangel synthetisiert die Pflanze das Trockenstresshormon ABA (Abscisins{\"a}ure). Das Hormon wird durch ABA-Rezeptoren erkannt und resultiert schließlich in der Aktivit{\"a}t der Proteinkinase OST1. Daraufhin reguliert diese Kinase zum einen die Transkription ABA-abh{\"a}ngiger Gene, die der Pflanze eine langfristige Adaptation an Trockenheit und Austrocknungstoleranz verleiht. Zum anderen, phosphoryliert OST1 den Anionenkanal SLAC1 und aktiviert ihn so. Die Aktivit{\"a}t des Kanals initiiert schließlich den Stomaschluss durch einen Ausstrom von Anionen aus den Schließzellen, der mit einer Depolarisation der Schließzellmembran einhergeht. Der ABA-Signalweg, der zur transkriptionellen Regulation von Genen und der damit verbunden Trockentoleranz f{\"u}hrt ist ein sehr stark konservierter und evolutiv sehr alter Signalweg, der in allen Geweben von Pflanzen bei Trockenheit beschritten wird. Der schnelle ABA-Signalweg, der die Aktivit{\"a}t der SLAC1 Anionenkan{\"a}le reguliert, ist auf Schließzellen begrenzt. Da sich Schließzellen aber erst sp{\"a}t in der Evolution von Landpflanzen etablierten, erhob sich die Frage, wann in der Evolution geriet SLAC1 unter die Kontrolle das ABA-Signalwegs? Geht diese Regulation von SLAC1 mit der Entstehung von Schließzellen einher oder bestand dieser Regulationsmechanismus bereits in Pflanzen, die keine Schließzellen besitzen. Zur Beantwortung dieser Frage untersuchte ich die einzelnen Komponenten des Signalwegs und ihre Beziehungen zu einander im heterologen Expressionssystem der Xenopus laevis Oozyten. Im Laufe dieser Arbeit wurden Schl{\"u}sselelemente des ABA-Signalwegs aus sechs verschiedenen Versuchspflanzen kloniert und in Oozyten charakterisiert. F{\"u}r die Untersuchung der Evolution des schnellen ABA-Signalwegs wurden die sechs Versuchspflanzen aus je einem rezenten Vertreter der Gr{\"u}nalgen (Klebsormidium nitens), der Lebermoose (Marchantia polymorpha), der Laubmoose (Physcomitrella patens), der Lycophyten (Selaginella moellendorffii) und der Farne (Ceratopteris richardii) ausgew{\"a}hlt und mit der Samenpflanze Arabidopsis thaliana verglichen. Die sechs Pflanzengruppen spalteten sich an unterschiedlichen Zeitpunkten im Laufe der pflanzlichen Evolution von der Entwicklung der restlichen Pflanzen ab und erlauben so einen bestm{\"o}glichen Einblick in den jeweiligen Entwicklungsstand der Landpflanzen w{\"a}hrend der Entstehung der einzelnen Pflanzenfamilien. Obwohl sich die ersten Stomata erst in den Laubmoosen entwickelten, besitzen schon die Gr{\"u}nalgen OST1-Kinasen und SLAC1-Kan{\"a}le. Interessanterweise konnte wir zeigen, dass schon die fr{\"u}hen OST1-Kinasen aus Algen und Moosen dazu in der Lage sind, in den h{\"o}her entwickelten Samenpflanzen die Rolle in der Regulation der ABA-abh{\"a}ngigen Expression von Genen zu {\"u}bernehmen. Außerdem zeigte sich im Laufe meiner biophysikalischen Untersuchungen, dass alle dreizehn getesteten OST1-Kinasen aus den sechs unterschiedlichen Versuchspflanzenarten in Lage sind, den Anionenkanal SLAC1 aus Arabidopsis in Xenopus Oozyten zu aktivieren. Diese Austauschbarkeit von den AtSLAC1-aktivierenden Kinasen deutet auf eine sehr starke Konservierung der Struktur und Funktion von OST1 hin. Anders verhielt es sich bei der funktionellen Analyse der Anionenkan{\"a}le aus den verschiedenen Versuchspflanzen: Hier bildete nur der evolution{\"a}r gesehen j{\"u}ngsten SLAC-Kanal AtSLAC1 aus Arabidopsis ein funktionelles P{\"a}rchen mit OST1. Die SLAC1 Kan{\"a}le aus der Gr{\"u}nalge, dem Lebermoos, den Lycophyten und dem Farn blieben ohne messbare Aktivit{\"a}t bei einer Co-expression mit den verschiedenen OST1 Kinasen. Nur beim Laubmoos (Physcomitrella patens) konnte noch ein funktionelles Kinase-Anionenkanal P{\"a}rchen gefunden werden. Struktur-Funktionsuntersuchungen erlaubten mir schließlich zu zeigen, dass bestimmte funktionelle Dom{\"a}nen sowohl im N-terminus als auch im C-terminus von SLAC1 erforderlich sind, um eine Aktivierung des Kanals durch OST1 Kinasen sicherzustellen.}, subject = {Evolution}, language = {de} } @article{HuangDingRoelfsemaetal.2021, author = {Huang, Shouguang and Ding, Meiqi and Roelfsema, M. Rob G. and Dreyer, Ingo and Scherzer, S{\"o}nke and Al-Rasheid, Khaled A. S and Gao, Shiqiang and Nagel, Georg and Hedrich, Rainer and Konrad, Kai R.}, title = {Optogenetic control of the guard cell membrane potential and stomatal movement by the light-gated anion channel GtACR1}, series = {Science Advances}, volume = {7}, journal = {Science Advances}, number = {28}, doi = {10.1126/sciadv.abg4619}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-260925}, year = {2021}, abstract = {Guard cells control the aperture of plant stomata, which are crucial for global fluxes of CO\(_2\) and water. In turn, guard cell anion channels are seen as key players for stomatal closure, but is activation of these channels sufficient to limit plant water loss? To answer this open question, we used an optogenetic approach based on the light-gated anion channelrhodopsin 1 (GtACR1). In tobacco guard cells that express GtACR1, blue- and green-light pulses elicit Cl\(^-\) and NO\(_3\)\(^-\) currents of -1 to -2 nA. The anion currents depolarize the plasma membrane by 60 to 80 mV, which causes opening of voltage-gated K+ channels and the extrusion of K+. As a result, continuous stimulation with green light leads to loss of guard cell turgor and closure of stomata at conditions that provoke stomatal opening in wild type. GtACR1 optogenetics thus provides unequivocal evidence that opening of anion channels is sufficient to close stomata.}, language = {en} } @phdthesis{Huang2023, author = {Huang, Shouguang}, title = {Role of ABA-induced Ca\(^{2+}\) signals, and the Ca\(^{2+}\)-controlled protein kinase CIPK23, in regulation of stomatal movements}, doi = {10.25972/OPUS-20473}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204737}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stomata are pores in the leaf surface, formed by pairs of guard cells. The guard cells modulate the aperture of stomata, to balance uptake of CO2 and loss of water vapor to the atmosphere. During drought, the phytohormone abscisic acid (ABA) provokes stomatal closure, via a signaling chain with both Ca2+-dependent and Ca2+-independent branches. Both branches are likely to activate SLAC1-type (Slow Anion Channel Associated 1) anion channels that are essential for initiating the closure of stomata. However, the importance of the Ca2+-dependent signaling branch is still debated, as the core ABA signaling pathway only possesses Ca2+-independent components. Therefore, the aim of this thesis was to address the role of the Ca2+-dependent branch in the ABA signaling pathway of guard cells. In the first part of the thesis, the relation between ABA-induced Ca2+ signals and stomatal closure was studied, with guard cells that express the genetically encoded Ca2+-indicator R-GECO1-mTurquoise. Ejection of ABA into the guard cell wall rapidly induced stomatal closure, however, only in ¾ of the guard cells ABA evoked a cytosolic Ca2+ signal. A small subset of stomata (¼ of the experiments) closed without Ca2+ signals, showing that the Ca2+ signals are not essential for ABA-induced stomatal closure. However, stomata in which ABA evoked Ca2+ signals closed faster as those in which no Ca2+ signals were detected. Apparently, ABA-induced Ca2+ signals enhance the velocity of stomatal closure. In addition to ABA, hyperpolarizing voltage pulses could also trigger Ca2+ signals in wild type guard cells, which in turn activated S-type anion channels. However, these voltage pulses failed to elicit S-type anion currents in the slac1/slah3 guard cells, suggesting that SLAC1 and SLAH3 contribute to Ca2+-activated conductance. Taken together, our data indicate that ABA-induced Ca2+ signals enhance the activity of S-type anion channels, which accelerates stomatal closure. The second part of the thesis deals with the signaling pathway downstream of the Ca2+ signals. Two types of Ca2+-dependent protein kinase modules (CPKs and CBL/CIPKs) have been implicated in guard cells. We focused on the protein kinase CIPK23 (CBL-Interacting Protein Kinase 23), which is activated by the Ca2+-dependent protein CBL1 or 9 (Calcineurin B-Like protein 1 or 9) via interacting with the NAF domain of CIPK23. The CBL1/9-CIPK23 complex has been shown to affect stomatal movements, but the underlying molecular mechanisms remain largely unknown. We addressed this topic by using an estrogen-induced expression system, which specifically enhances the expression of wild type CIPK23, a phosphomimic CIPK23T190D and a kinase dead CIPK23K60N in guard cells. Our data show that guard cells expressing CIPK23T190D promoted stomatal opening, while CIPK23K60N enhanced ABA-induced stomatal closure, suggesting that CIPK23 is a negative regulator of stomatal closure. Electrophysiological measurements revealed that the inward K+ channel currents were similar in guard cells that expressed CIPK23, CIPK23T190D or CIPK23K60N, indicating that CIPK23-mediated inward K+ channel AKT1 does not contribute to stomatal movements. Expression of CIPK23K60N, or loss of CIPK23 in guard cells enhanced S-type anion activity, while the active CIPK23T190D inhibited the activity of these anion channels. These results are in line with the detected changes in stomatal movements and thus indicate that CIPK23 regulates stomatal movements by inhibiting S-type anion channels. CIPK23 thus serves as a brake to control anion channel activity. Overall, our findings demonstrate that CIPK23-mediated stomatal movements do not depend on CIPK23-AKT1 module, instead, it is achieved by regulating S-type anion channels SLAC1 and SLAH3. In sum, the data presented in this thesis give new insights into the Ca2+-dependent branch of ABA signaling, which may help to put forward new strategies to breed plants with enhanced drought stress tolerance, and in turn boost agricultural productivity in the future.}, language = {en} }