@phdthesis{Pedrotti2018, author = {Pedrotti, Lorenzo}, title = {The SnRK1-C/S1-bZIPs network: a signaling hub in Arabidopsis energy metabolism regulation}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116080}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63. Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Nazeer2010, author = {Nazeer, Ahmed}, title = {Physiological and molecular basis of Azospirillum-Arabidopsis Interaction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-51673}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {The present study was aimed at revealing the early signalling events during the interaction of the diazotrophic soil bacterium Azospirillum brasilense with its host plant Arabidopsis thaliana. Furthermore, taking advantage of the micro array technique, a comprehensive overview of Arabidopsis genes has been undertaken which are affected upon association with A. brasilense The characterization of the early responses of Arabidopsis plants upon inoculation with Azospirillum brasilense strain Sp7 clearly indicated parallels with the initial events in plant pathogen interaction. For instance, not only bacterial preprations (lysates) form Azospirillum elicited an apoplastic alkalinization of the culture medium, but also the live bacteria, which were even more effective. Besides, in a luminol based assay, the bacterial lysates triggered production of the reactive oxygen species (ROS) in the Arabidopsis leaf discs. Interestingly, the elongation factor receptor mutants (efr) were completely insensitive to Azospirillum, suggesting elongation factor Tu (EF-TU) recognition as elicitor by Arabidopsis. This hypothesis was further validated with a bioinformatic approach. The N terminus initial 26 amino acids from Azospirillum EF-TU gene (elf26) showed more similarity to the elf26 sequences of bacteria like Agrobacterium tumefaciens which elicit responses in the plants through EF-TU rather than Pseudomonas syringae where the potent elicitor is flagellin 22. Universal transcriptome profiling of Arabidopsis thaliana seedlings upon inoculation with Azospirillum brasilense over a time course of six, twenty four and ninty six hours revealed very little genetic responses in the early time points. However, a bulk of genes was differentially regulated in 96 hours post inoculation (96hpi). The nature of these genes indicated that the bacterial treatment, among others, greatly affect the processes like cell wall modification, hormone metabolism, stress and secondary metabolism. Additionally expression levels of a numer of transcription factors (TFs) related to basic helix loop helix (BHLH) and MYB domain containing TF families were altered with Azospirillum inoculation. Particularly the BHLH TFs were among the most highly regulated genes. The array results from Azospirillum treated plants were further compared with the already available data emnating from treatment with flagellin 22 (flg22), oligogalacturonides (OGs) and Agrobacterium tumefaciens. Noteworthy, very different set of genes were affected upon inoculation with Azospirillum in relation to other treatments. Secondly a cluster of proteins involved in the biosynthesis of aliphatic glucosinolates (GSL) were uniquely induced upon Sp7 exposure. Genes operating in flavonoid biosynthesis also showed a distinct regulation trend in the comparative analysis. Taken together, the study in question provides insights into the early signalling events in the context of Azospirillum-Arabidopsis association and the bacterial signals recognized by the plants. The array data, at the same time, elucidates the genetic factors of Arabidopsis triggered upon association with Azospirillum brasilense.}, subject = {Azospirillum brasilense}, language = {en} } @phdthesis{Mueller2017, author = {M{\"u}ller, Stephanie}, title = {Plant thermotolerance: The role of heat stress-induced triacylglycerols in \(Arabidopsis\) \(thaliana\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152829}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Plants are exposed to high temperature, especially during hot summer days. Temperatures are typically lowest in the morning and reach a maximum in the afternoon. Plants can tolerate and survive short-term heat stress even on hot summer days. A. thaliana seedlings have been reported to tolerate higher temperatures for different time periods, a phenomenon that has been termed basal thermotolerance. In addition, plants have the inherent capacity to acclimate to otherwise lethal temperatures. Arabidopsis thaliana seedlings acclimate at moderately elevated temperatures between 32-38° C. During heat acclimation, a genetically programmed heat shock response (HSR) is triggered that is characterized by a rapid activation of heat shock transcription factors (HSFs), which trigger a massive accumulation of heat shock proteins that are chiefly involved in protein folding and protection. Although the HSF-triggered heat-shock response is well characterized, little is known about the metabolic adjustments during heat stress. The aim of this work was to get more insight into heat-responsive metabolism and its importance for thermotolerance. In order to identify the response of metabolites to elevated temperatures, global metabolite profiles of heat-acclimated and control seedlings were compared. Untargeted metabolite analyses revealed that levels of polyunsaturated triacylglycerols (TG) rapidly increase during heat acclimation. TG accumulation was found to be temperature-dependent in a temperature range from 32-50° C (optimum at 42° C). Heat-induced TG accumulation was localized in extra-chloroplastic compartments by chloroplast isolation as well as by fluorescence microscopy of A. thaliana cell cultures. Analysis of mutants deficient in all four HSFA1 master regulator genes or the HSFA2 gene revealed that TG accumulation occurred independently to HSF. Moreover, the TG response was not limited to heat stress since drought and salt stress (but not short-term osmotic, cold and high light stress) also triggered an accumulation of TGs. In order to reveal the origin of TG synthesis, lipid analysis was carried out. Heat-induced accumulation of TGs does not derive from massive de novo fatty acid (FA) synthesis. On the other hand, lipidomic analyses of A. thaliana seedlings indicated that polyunsaturated FA from thylakoid galactolipids are incorporated into cytosolic TGs during heat stress. This was verified by lipidomic analyses of A. thaliana fad7/8 transgenic seedlings, which displayed altered FA compositions of plastidic lipids. In addition, wild type A. thaliana seedlings displayed a rapid conversion of plastidic monogalactosyldiacylglycerols (MGDGs) into oligogalactolipids, acylated MGDGs and diacylglycerols (DGs). For TG synthesis, DG requires a FA from the acyl CoA pool or phosphatidylcholine (PC). Seedlings deficient in phospholipid:diacylglycerol acyltransferase1 (PDAT1) were unable to accumulate TGs following heat stress; thus PC appears to be the major FA donor for TGs during heat treatment. These results suggest that TG and oligogalactolipid accumulation during heat stress is driven by post-translationally regulated plastid lipid metabolism. TG accumulation following heat stress was found to increase basal thermotolerance. Pdat1 mutant seedlings were more sensitive to severe heat stress without prior acclimatization, as revealed by a more dramatic decline of the maximum efficiency of PSII and lower survival rate compared to wild type seedlings. In contrast, tgd1 mutants over-accumulating TGs and oligogalactolipids displayed a higher basal thermotolerance compared to wild type seedlings. These results therefore suggest that accumulation of TGs increases thermotolerance in addition to the genetically encoded heat shock response.}, subject = {Triglyceride}, language = {en} } @phdthesis{Mishina2007, author = {Mishina, Tatiana E.}, title = {Mechanisms of local and systemic defences in Arabidopsis thaliana in response to host and non-host strains of Pseudomonas syringae}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23160}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {Stickstoffmonooxid (NO) wird als wichtige Signalkomponente bei der Entwicklung der Hypersensitiven Reaktion beschrieben. Außerdem wird NO eine Rolle als Signalmolek{\"u}l bei der Expression von Abwehrgenen wie PR-1, PAL1 oder Chalkonsynthase (CHS) und bei der Akkumulation von Salicyls{\"a}ure zugeordnet (Durner et al., 1998). In der vorliegenden Arbeit wurden transgene Pflanzen mit ver{\"a}nderten endogenen NO-Spiegeln verwendet, um die Rolle von NO in Pflanze-Pathogen-Interaktionen zu untersuchen. Arabidopsis-Pflanzen, die aufgrund der Expression einer NO Dioxygenase erniedrigte NO-Gehalte aufweisen, zeigen nach einem Angriff avirulenter Pathogene einen abgeschw{\"a}chten oxidative burst und eine reduzierte Expression von Genen des Phenylpropanbiosyntheseweges. Weitere Experimente mit transgenen Pflanzen, die eine bakterielle NO-Synthase exprimieren, legen nahe, dass eine konstitutive Erh{\"o}hung der NO-Spiegel nicht zu einer konstitutiv verst{\"a}rkten Pathogenabwehr f{\"u}hrt. M{\"o}glicherweise ist eine graduelle Steigerung der NO-Gehalte nach Pathogenkontakt f{\"u}r die Induktion pflanzlicher Abwehrreaktionen erforderlich. Im Gegenteil, die NOS-exprimierenden Pflanzen waren anf{\"a}lliger gegen bakterielle Pathogene als Wildtyp-Pflanzen und zeigten eine abgeschw{\"a}chte SAR-Reaktion. Die Ergebnisse deuten auch darauf hin, dass NO eine wichtige Rolle bei der Regulation des Redoxstatus in der Pflanzenzelle spielt. Diese Funktion von NO ist wichtig beim Seneszenzvorgang. Entsprechend der Ergebnisse dieser Arbeit kann NO als negativer Regulator der Blattseneszenz angesehen werden. Die Wirkungsweise von NO auf molekularer Ebene und die Signalkaskaden, in die NO involviert ist, sind immer noch nicht ausreichend verstanden. In zuk{\"u}nftigen Experimenten wird es notwendig sein, die selektive Quantifizierung von NO in intaktem Pflanzengewebe zu gew{\"a}hrleisten, die Proteintargets von NO zu identifizieren und die Struktur und Funktion NO-modifizierter Biomolek{\"u}le zu entschl{\"u}sseln, um die Rolle von NO in Pflanze-Pathogen-Wechselwirkungen besser verstehen zu lernen. Die Nichtwirtsresistenz beruht auf mehreren Verteidigungsebenen, welche konstitutive und induzierte Komponenten beinhalten. Die Bedeutung induzierter Abwehrreaktionen f{\"u}r die Nichtwirtsresistenz gegen bakterielle Pathogene ist nicht vollst{\"a}ndig klar. Die Daten der vorliegenden Arbeit legen nahe, dass das Wachstum von Nichtwirtsbakterien in Arabidopsis-Bl{\"a}ttern durch vorgebildete toxische Substanzen und durch induzierte Zellwandverst{\"a}rkungen gehemmt wird. Nichtwirtsbakterien verursachen eine schnelle Induktion der Expression der Ligninbiosynthesegene PAL1 und BCB, die unabh{\"a}ngig vom Typ III-Sekretionssystem ist und m{\"o}glicherweise zur Papillenbildung beitr{\"a}gt. Dar{\"u}ber hinaus ist die {\"U}berlebensrate der Nichtwirtsbakterien in den extrazellul{\"a}ren R{\"a}umen der Arabidopsis pal1-Mutante h{\"o}her als in Wildtyp-Pflanzen, was die funktionelle Bedeutung der PAL1-Expression bei der Nichtwirtsresistenz verdeutlicht. Außerdem zeigen die Experimente, dass Nichtwirtsbakterien in {\"a}hnlicher Weise wie Wirtsbakterien die Akkumulation von Salicyls{\"a}ure und die Expression von PR-Genen induzieren. Die Induktion dieser Abwehrkomponenten ist abh{\"a}ngig von einem intakten Typ III-Sekretionssystem. Die Signalwege, auf denen nach Kontakt mit Nichtwirtsbakterien und Wirtsbakterien Abwehrreaktionen induziert werden, sind {\"a}hnlich. Es wurden jedoch zwischen zwei verschiedenen Nichtwirtsst{\"a}mmen auch unterschiedliche Signalwege aktiviert, was m{\"o}glicherweise auf ein unterschiedliches Repertoire von TypIII-Effektoren der beiden St{\"a}mme zur{\"u}ckgef{\"u}hrt werden kann. Trotz der Aktivierung dieser induzierten Abwehr zeigen Experimente mit klassischen Abwehrmutanten, dass SA- und JA-abh{\"a}ngige Abwehrreaktionen nicht direkt zur Nichtwirtsresistenz gegen P. syringae beitragen. Weiterhin zeigt diese Arbeit, dass die Nichtwirtsresistenz des Arabidopsis-{\"O}kotyps Col-0 effektiver ist als die des Ler-0-{\"O}kotyps, obwohl bei letzterem die Resistenz gegen virulente Bakterien h{\"o}her ist. Diese Unterschiede scheinen nicht mit der unterschiedlichen Glucosinolatzusammensetzung der beiden {\"O}kotypen im Zusammenhang zu stehen. Um das Verst{\"a}ndnis der Nichtwirtsresistenz von Arabidopsis gegen{\"u}ber P. syringae zu verbessern, k{\"o}nnen in zuk{\"u}nftigen Experimenten Doppel- und Triplemutanten hergestellt werden, die gleichzeitig Defekte in der zellwandabh{\"a}ngigen Abwehr (Lignin- und Callosebiosynthese) und in klassischen, SA-abh{\"a}ngigen Abwehrreaktionen aufweisen. Auch k{\"o}nnen Analysen des Genom-Polymorphismus und der Zusammensetzung von Sekund{\"a}rmetaboliten in den {\"O}kotypen Ler-0 und Col-0 zu einem besseren Verst{\"a}ndnis der Nichtwirtsresistenz f{\"u}hren. Die Resultate dieser Arbeit zeigen, dass ein lokaler, symptomfreier Kontakt von Arabidopsis-Bl{\"a}ttern mit Nichtwirtsbakterien, TTSS-defiziente Bakterien und allgemeine bakterielle Elicitoren (PAMPs) wie Flagellin und Lipopolysaccharide die systemisch erworbene Resistenz innerhalb der Gesamtpflanze hervorrufen. Die symptomlose systemische Resistenzreaktion findet in SAR-defizienten Mutanten nicht statt, wird jedoch in der Jasmonat-insensitiven jar1-Mutante, die keine ISR-Reaktion ausbilden kann, beobachtet. Durch Behandlung von Arabidopsis-Bl{\"a}ttern mit unterschiedlichen Inokuli von virulenten oder avirulenten P. syringae-St{\"a}mmen wurde auch eine deutliche Korrelation des Ausmaßes der SAR-Induktion mit der H{\"o}he der SA-Akkumulation oder der PR-Genexpression, aber nicht mit der Nekrosenbildung oder der JA-Produktion, am Infektionsort festgestellt. Diese Ergebnisse verdeutlichen, dass nicht die Hypersensitive Reaktion oder Gewebenekrosen, sondern m{\"o}glicherweise die St{\"a}rke bestimmter Abwehrreaktionen am Ort der Inokulation zur Ausl{\"o}sung der SAR beitragen. Die Befunde, dass die systemische Resistenz auch durch PAMPs und durch TTSS-defekte P. syringae-St{\"a}mme erh{\"o}ht wird, verdeutlicht die wichtige Rolle von allgemeinen Elicitoren bei der SAR-Induktion. In k{\"u}nftige Experimenten kann untersucht werden, ob verschiedene PAMPs die SAR in synergistischer Weise induzieren und ob allgemeine Elicitoren pilzlicher Herkunft SAR ausl{\"o}sen k{\"o}nnen. Weiterhin k{\"o}nnen die molekulare Prozesse spezifiziert werden, die stromabw{\"a}rts von PAMP-Erkennungsprozessen f{\"u}r die SAR-Ausbildung notwendig sind. In weiteren Experimenten k{\"o}nnte die Hypothese {\"u}berpr{\"u}ft werden, ob einzelner PAMPs als mobile SAR-Langstreckensignale fungieren k{\"o}nnen. Durch phytopathologische Charakterisierung von T-DNA-Knockout-Linien, die Defekte in Genen aufweisen, welche in Arabidopsis nach einer P. syringae-Infektion aufreguliert werden, konnte das FLAVIN-DEPENDENT MONOOXYGENASE1 (FMO1)-Gen als notwendige Komponente der SAR in Arabidopsis identifiziert werden. So bleiben die im Wildtyp induzierten systemischen Abwehrreaktionen und die Erh{\"o}hung der systemischen Resistenz nach lokaler Inokulation mit P. syringae in fmo1-Knockout-Pflanzen vollst{\"a}ndig aus. Weiterhin korreliert die systemische Expression des FMO1-Gens eng mit der SAR-Induktion. So gibt es bei allen Abwehrmutanten, die keine SAR nach Kontakt mit P. syringae ausbilden k{\"o}nnen, keine FMO1-Expression in distalen Bl{\"a}ttern inokulierter Pflanzen. Umgekehrt verh{\"a}lt es sich mit Arabidopsis-Linien, die die SAR ausbilden. Die erhaltenen Ergebnisse deuten darauf hin, dass FMO1 eine wichtige Komponente eines Signalverst{\"a}rkungszyklus darstellt, der in nichtinfizierten, systemischen Teilen der Pflanze wirkt, um die SAR zu erm{\"o}glichen. In k{\"u}nftigen Experimenten soll der postulierte Amplifizierungsmechanismus experimentell verifiziert werden. Die Konstruktion von transgenen Linien, die ein FMO1:GFP-Fusionsprodukt exprimieren, kann Informationen {\"u}ber die zellu{\"a}re Lokalisation des FMO1-Proteins liefern. Weiterhin k{\"o}nnen vergleichende Analysen der chemischen Zusammensetzung von Blattextrakten der fmo1 Knockout-Linien, von FMO1-{\"U}berexprimierern und von Wildtyp-Pflanzen zur Aufkl{\"a}rung der biochemischen Reaktion beitragen, die die FMO1-Monooxygenase katalysiert. In Anlehnung an die Funktion von yFMO, die die einzige Flavin-abh{\"a}ngige Monooxygenase der Hefe darstellt, kann {\"u}berpr{\"u}ft werden, ob FMO1 die korrekte Faltung von Proteinen am endoplasmatischen Retikulum vermittelt. Schließlich kann durch die Identifizierung weitere SAR-Gene nach der beschriebenen Strategie und durch funktionelle Charakterisierung der zugeh{\"o}rigen Proteine das Verst{\"a}ndnis der SAR-Reaktion auf molekularer Ebene weiter verbessert werden.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Lambour2023, author = {Lambour, Benjamin}, title = {Regulation of sphingolipid long-chain bases during cell death reactions and abiotic stress in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-32591}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-325916}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Sphingobasen (LCBs) sind die Bausteine der Biosynthese von Sphingolipiden. Sie werden als Strukturelemente der pflanzlichen Zellmembran definiert und spielen eine wichtige Rolle f{\"u}r das Schicksal der Zellen. Komplexe Ceramide machen einen wesentlichen Teil der gesamten Sphingolipide aus, die einen großen Teil der eukaryotischen Membranen bilden. Gleichzeitig sind LCBs bekannte Signalmolek{\"u}le f{\"u}r zellul{\"a}re Prozesse in Eukaryonten und sind an Signal{\"u}bertragungswegen in Pflanzen beteiligt. Es hat sich gezeigt, dass hohe LCB-Konzentrationen mit der Induktion des programmierten Zelltods sowie mit dem durch Pathogene ausgel{\"o}sten Zelltod in Verbindung stehen. Mehrere Studien haben die regulierende Funktion der Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen best{\"a}tigt: (i) Spontaner PCD und ver{\"a}nderte Zelltodreaktionen, die durch mutierte verwandte Gene des Sphingobasen-Stoffwechsels verursacht werden. (ii) Zelltodbedingungen erh{\"o}hen den Gehalt an LCBs. (iii) PCD aufgrund eines gest{\"o}rten Sphingolipid-Stoffwechsels, der durch von nekrotrophen Krankheitserregern produzierte Toxine wie Fumonisin B1 (FB1) hervorgerufen wird. Um den Zelltod zu verhindern und die Zelltodreaktion zu kontrollieren, kann daher die Regulierung des Gehalts an freien LCBs entscheidend sein. Die Ergebnisse der vorliegenden Studie stellten das Verst{\"a}ndnis der Sphingobasen und Sphingolipidspiegel w{\"a}hrend der PCD in Frage. Wir lieferten eine detaillierte Analyse der Sphingolipidspiegel, die Zusammenh{\"a}nge zwischen bestimmten Sphingolipidarten und dem Zelltod aufzeigte. Dar{\"u}ber hinaus erm{\"o}glichte uns die Untersuchung der Sphingolipid-Biosynthese ein Verst{\"a}ndnis des Fluxes nach Akkumulation hoher LCB-Konzentrationen. Weitere Analysen von Abbauprodukten oder Sphingolipid-Mutantenlinien w{\"a}ren jedoch erforderlich, um vollst{\"a}ndig zu verstehen, wie die Pflanze mit hohen Mengen an Sphingobasen umgeht.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Klinkenberg2011, author = {Klinkenberg, J{\"o}rn}, title = {Physiological Role of Fatty Acid Desaturation in Agrobacterium-induced Arabidopsis Crown Galls}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-75262}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Crown gall development is accompanied by hypoxia, drought and oxidative stress. These abiotic stress factors are known to have an impact on fatty acid (FA) desaturation. Thus, an alteration in the lipid profile of plant tumors was expected. A comprehensive lipid analysis of Arabidopsis thaliana crown galls induced by Agrobacterium tumefaciens showed an increase in the degree of FA desaturation. The poly unsaturated fatty acid (PUFA) linolenic acid (18:3) of endoplasmic reticulum (ER) derived phospholipids was especially affected. The increased levels of desaturated FAs were reflected by a strong induction of two genes encoding desaturases, FAD3 and SAD6. In contrast to FAD3, which encodes the ER membrane bound fatty acid desaturase enzyme that synthesizes 18:3 PUFAs in the ER, the function of SAD6 is unknown. The ability of SAD6 to complement the extreme dwarf growth phenotype of the ssi2-2 mutant allele suggests that SAD6 is a functional stearoyl-acyl-carrier-protein delta-9 desaturase (SAD) which catalyzes the first step in FA desaturation and forms stearic acid (18:1). Overexpression of the SAD6 gene in Arabidopsis (SAD6-OE) to a similar degree as in tumors resulted in a light-dependent chlorosis phenotype and caused a similar shift in the lipid profile towards unsaturated phospholipids. Posttranscriptional down-regulation of SAD6 overexpression by RNA reverted the chlorosis phenotype and the changes in the lipid profile, showing that SAD6 overexpression forms the unsaturated FA profile and the phenotype in SAD6-OE. The subcellular localization of the SAD6 protein in chloroplasts, which is obligatory for SAD function was demonstrated. SSI2, which encodes the major contributor to the 18:1 FA levels in Arabidopsis is down-regulated in crown galls pointing to a replacement of SSI2 function by SAD6 in the tumor. SAD6 transcripts were almost undetectable in Arabidopsis under normal growth condition, whereas under hypoxia the gene was strongly activated. In the tumor hypoxia most likely caused the very high transcription of SAD6. Hypoxia is known to limit FA desaturation and it is associated with an elevated reactive oxygen species (ROS) production which is detrimental for unsaturated FAs. Thus, up-regulation of SAD6 in the crown gall, most likely serves as an adaptive mechanism to activate desaturation under low oxygen concentrations and to maintain the levels of unsaturated FA under oxidative stress. The ER localized FAD3 most likely is responsible for the rise in 18:3 of the phospholipid class to cope with drought stress in crown galls. This hypothesis was supported by the loss of function mutant, fad3-2, which developed significantly smaller tumors as the wild type under low relative humidity.Taken together, this study suggests that the induction of SAD6 and FAD3 shapes the tumor lipid profile by increasing the levels of unsaturated FAs. Unsaturated fatty acids prepare the crown gall to cope with ongoing hypoxia, drought and oxidative stress during growth and development.}, subject = {Agrobacterium tumefaciens}, language = {en} } @phdthesis{Horn2017, author = {Horn, Hannes}, title = {Analysis and interpretation of (meta-)genomic data from host-associated microorganisms}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152035}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {Host-microbe interactions are the key to understand why and how microbes inhabit specific environments. With the scientific fields of microbial genomics and metagenomics, evolving on an unprecedented scale, one is able to gain insights in these interactions on a molecular and ecological level. The goal of this PhD thesis was to make (meta-)genomic data accessible, integrate it in a comparative manner and to gain comprehensive taxonomic and functional insights into bacterial strains and communities derived from two different environments: the phyllosphere of Arabidopsis thaliana and the mesohyl interior of marine sponges. This thesis focused first on the de novo assembly of bacterial genomes. A 5-step protocol was developed, each step including a quality control. The examination of different assembly software in a comparative way identified SPAdes as most suitable. The protocol enables the user to chose the best tailored assembly. Contamination issues were solved by an initial filtering of the data and methods normally used for the binning of metagenomic datasets. This step is missed in many published assembly pipelines. The described protocol offers assemblies of high quality ready for downstream analysis. Subsequently, assemblies generated with the developed protocol were annotated and explored in terms of their function. In a first study, the genome of a phyllosphere bacterium, Williamsia sp. ARP1, was analyzed, offering many adaptions to the leaf habitat: it can deal with temperature shifts, react to oxygen species, produces mycosporins as protection against UV-light, and is able to uptake photosynthates. Further, its taxonomic position within the Actinomycetales was infered from 16S rRNA and comparative genomics showing the close relation between the genera Williamsia and Gordonia. In a second study, six sponge-derived actinomycete genomes were investigated for secondary metabolism. By use of state-of-the-art software, these strains exhibited numerous gene clusters, mostly linked to polykethide synthases, non-ribosomal peptide synthesis, terpenes, fatty acids and saccharides. Subsequent predictions on these clusters offered a great variety of possible produced compounds with antibiotic, antifungal or anti-cancer activity. These analysis highlight the potential for the synthesis of natural products and the use of genomic data as screening toolkit. In a last study, three sponge-derived and one seawater metagenomes were functionally compared. Different signatures regarding the microbial composition and GC-distribution were observed between the two environments. With a focus on bacerial defense systems, the data indicates a pronounced repertoire of sponge associated bacteria for bacterial defense systems, in particular, Clustered Regularly Interspaced Short Palindromic Repeats, restriction modification system, DNA phosphorothioation and phage growth limitation. In addition, characterizing genes for secondary metabolite cluster differed between sponge and seawater microbiomes. Moreover, a variety of Type I polyketide synthases were only found within the sponge microbiomes. With that, metagenomics are shown to be a useful tool for the screening of secondary metabolite genes. Furthermore, enriched defense systems are highlighted as feature of sponge-associated microbes and marks them as a selective trait.}, subject = {Bakterien}, language = {en} } @phdthesis{Griebel2010, author = {Griebel, Thomas}, title = {Local and systemic resistance in Arabidopsis thaliana in response to Pseudomonas syringae: impact of light and phytosterols}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48370}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Inoculation with plant pathogens induces a diverse range of plant responses which potentially contribute to disease resistance or susceptibility. Plant responses occuring in consequence of pathogen infection include activation of classical defence pathways and changes in metabolic activity. The main defence route against hemibiotrophic bacterial pathogens such as Pseudomonas syringae is based on the phytohormone salicylic acid (SA). SA-mediated responses are strictly regulated and have also been shown to depend on external factors, e.g. the presence of light. A major goal of this work was to provide a better understanding of the light dependency of plant defence responses mediated through SA. The second part of the project focussed on the influence of plant sterols on plant resistance. I analyzed leaf lipid composition and found that accumulation of the phytosterol stigmasterol in leaves and in isolated (plasma) membranes is a significant plant metabolic process occurring upon pathogen infection.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Dindas2019, author = {Dindas, Julian}, title = {Cytosolic Ca\(^2\)\(^+\), a master regulator of vacuolar ion conductance and fast auxin signaling in \(Arabidopsis\) \(thaliana\)}, doi = {10.25972/OPUS-15863}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158638}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Das Phytohormon Auxin erf{\"u}llt wichtige Funktionen bei der Initiierung von pflanzlichen Geweben und Organen, wie auch in der Steuerung des Wurzelwachstums im Zusammenspiel mit {\"a}ußeren Reizen wie Schwerkraft, Wasser- und N{\"a}hstoffverf{\"u}gbarkeit. Diese Funktionen basieren dabei vor allem auf der Auxin-abh{\"a}ngigen Regulation von Zellteilung und -streckung. Wichtig f{\"u}r letzteres ist dabei die Kontrolle des Zellturgors durch die Vakuole. Als Speicher f{\"u}r N{\"a}hrstoffe, Metabolite und Toxine sind Vakuolen von essentieller Bedeutung. Vakuol{\"a}r gespeicherte Metabolite und Ionen werden sowohl {\"u}ber aktive Transportprozesse, als auch passiv durch Ionenkan{\"a}le, {\"u}ber die vakuol{\"a}re Membran mit dem Zytoplasma ausgetauscht. In ihrer Funktion als second messenger sind Kalziumionen wichtige Regulatoren, aber auch Gegenstand vakuol{\"a}rer Transportprozesse. {\"A}nderungen der zytosolischen Kalziumkonzentration wirken nicht nur lokal, sie werden auch mit einer Signalweiterleitung {\"u}ber l{\"a}ngere Distanzen in Verbindung gebracht. Im Rahmen dieser Arbeit wurden elektrophysiologische Methoden mit bildgebenden Methoden kombiniert um Einblicke in das Zusammenspiel zwischen zytosolischen Kalziumsignalen, vakuol{\"a}rer Transportprozesse und der Auxin-Physiologie im intakten pflanzlichen Organismus zu gewinnen. Kalziumsignale sind an der Regulierung vakuol{\"a}rer Ionenkan{\"a}le und Transporter beteiligt. Um dies im intakten Organismus zu untersuchen wurden im Modellsystem junger Wurzelhaare von Arabidopsis thaliana Messungen mit intrazellul{\"a}ren Mikroelektroden durchgef{\"u}hrt. Mittels der Zwei-Elektroden-Spannungsklemm-Technik konnte best{\"a}tigt werden, dass die vakuol{\"a}re Membran der limitierende elektrische Wiederstand w{\"a}hrend intravakuol{\"a}rer Messungen ist und so gemessene Ionenstr{\"o}me in der Tat nur die Str{\"o}me {\"u}ber die vakuol{\"a}re Membran repr{\"a}sentieren. Die bereits bekannte zeitabh{\"a}ngige Abnahme der vakuol{\"a}ren Leitf{\"a}higkeit in Einstichexperimenten konnte weiterhin mit einer einstichbedingten, transienten Erh{\"o}hung der zytosolischen Kalziumkonzentration korreliert werden. Durch intravakuol{\"a}re Spannungsklemmexperimente in Wurzelhaarzellen von Kalziumreporterpflanzen konnte dieser Zusammenhang zwischen vakuol{\"a}rer Leitf{\"a}higkeit und der zytosolischen Kalziumkonzentration best{\"a}tigt werden. Die Vakuole ist jedoch nicht nur ein Empf{\"a}nger zytosolischer Kalziumsignale. Da die Vakuole den gr{\"o}ßten intrazellul{\"a}ren Kalziumspeicher darstellt, wird seit Langem diskutiert, ob sie auch an der Erzeugung solcher Signale beteiligt ist. Dies konnte in intakten Wurzelhaarzellen best{\"a}tigt werden. {\"A}nderungen des vakuol{\"a}ren Membranpotentials wirkten sich auf die zytosolische Kalziumkonzentration in diesen Zellen aus. W{\"a}hrend depolarisierende Potentiale zu einer Erh{\"o}hung der zytosolischen Kalziumkonzentration f{\"u}hrten, bewirkte eine Hyperpolarisierung der vakuol{\"a}ren Membran das Gegenteil. Thermodynamische {\"U}berlegungen zum passiven und aktiven Kalziumtransport {\"u}ber die vakuol{\"a}re Membran legten dabei den Schluss nahe, dass die hierin beschriebenen Ergebnisse das Verhalten von vakuol{\"a}ren H+/Ca2+ Austauschern wiederspiegeln, deren Aktivit{\"a}t durch die protonenmotorische Kraft bestimmt wird. Im Rahmen dieser Arbeit stellte sich weiterhin heraus, dass zytosolisches Kalzium ebenso ein zentraler Regulator eines schnellen Auxin-induzierten Signalweges ist, {\"u}ber den der polare Transport des Hormons reguliert wird. Im gleichen Modellsystem junger Wurzelhaare konnte gezeigt werden, dass die externe Applikation von Auxin eine sehr schnelle, Auxinkonzentrations- und pH-abh{\"a}ngige Depolarisation des Plasmamembranpotentials zur Folge hat. Synchron zur Depolarisation des Plasmamembranpotentials wurden im Zytosol transiente Kalziumsignale registriert. Diese wurden durch einen von Auxin aktivierten Einstrom von Kalziumionen durch den Ionenkanal CNGC14 hervorgerufen. Experimente an Verlustmutanten als auch pharmakologische Experimente zeigten, dass zur Auxin-induzierten Aktivierung des Kalziumkanals die Auxin-Perzeption durch die F-box Proteine der TIR1/AFB Familie erforderlich ist. Durch Untersuchungen der Auxin-abh{\"a}ngigen Depolarisation wie auch des Auxin-induzierten Einstroms von Protonen in epidermale Wurzelzellen von Verlustmutanten konnte gezeigt werden, dass die sekund{\"a}r aktive Aufnahme von Auxin durch das hochaffine Transportprotein AUX1 f{\"u}r die schnelle Depolarisation verantwortlich ist. Nicht nur die zytosolischen Kalziumsignale korrelierten mit der CNGC14 Funktion, sondern ebenso die AUX1-vermittelte Depolarisation von Wurzelhaaren. Eine unver{\"a}nderte Expression von AUX1 in der cngc14 Verlustmutante legte dabei den Schluss nahe, dass die Aktivit{\"a}t von AUX1 posttranslational reguliert werden muss. Diese Hypothese erfuhr Unterst{\"u}tzung durch Experimente, in denen die Behandlung mit dem Kalziumkanalblocker Lanthan zu einer Inaktivierung von AUX1 im Wildtyp f{\"u}hrte. Die zytosolische Beladung einzelner epidermaler Wurzelzellen mit Auxin hatte die Ausbreitung lateraler und acropetaler Kalziumwellen zur Folge. Diese korrelierten mit einer Verschiebung des Auxin-Gradienten an der Wurzelspitze und unterst{\"u}tzten somit eine hypothetische Kalziumabh{\"a}ngige Regulation des polaren Auxin Transports. Ein Model f{\"u}r einen schnellen, Auxin induzierten und kalziumabh{\"a}ngigen Signalweg wird pr{\"a}sentiert und dessen Bedeutung f{\"u}r das gravitrope Wurzelwachstum diskutiert. Da die AUX1-vermittelte Depolarisation in Abh{\"a}ngigkeit von der externen Phosphatkonzentration variierte, wird die Bedeutung dieses schnellen Signalwegs ebenso f{\"u}r die Anpassung des Wurzelhaarwachstums an eine nicht ausreichende Verf{\"u}gbarkeit von Phosphat diskutiert.}, subject = {Ackerschmalwand}, language = {en} } @phdthesis{Demir2010, author = {Demir, Fatih}, title = {Lipid rafts in Arabidopsis thaliana leaves}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53223}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Arabidopsis thaliana (A.th.) mesophyll cells play a pivotal role in the regulation of the drought stress response. The signaling \& transport components involved in drought stress regulation within lipid rafts of the plasma membrane were investigated by DRM isolation from highly purified plasma membranes. Detergent treatment with Brij-98 and Triton X-100 resulted in a total of 246 DRM proteins which were identified by nano HPLC-MS/MS. The majority of these proteins could be isolated by Triton X-100 treatment (78.5 \%) which remains the "golden" standard for the isolation of DRMs. Comparing in-gel and in-solution digestion approaches disclosed additional protein identifications for each method but the in-gel approach clearly delivered the majority of the identified proteins (81.8 \%). Functionally, a clear bias on signaling proteins was visible - almost 1/3 of the detected DRM proteins belonged to the group of kinases, phosphatases and other signaling proteins. Especially leucine-rich repeat receptor-like protein kinases and calcium-dependent protein kinases were present in Brij-98 \& Triton X-100 DRMs, for instance the calcium-dependent protein kinase CPK21. Another prominent member of DRMs was the protein phosphatase 2C 56, ABI1, which is a key regulator of the ABA-mediated drought stress response in A.th. The lipid raft localization of the identified DRM proteins was confirmed by sterol-depletion with the chemical drug MCD. Proteins which depend upon a sterol-rich environment are depleted from DRMs by MCD application. Especially signaling proteins exhibited a strong sterol-dependency. They represented the vast majority (41.5 \%) among the Triton X-100 DRM proteins which were no longer detected following MCD treatment. AtRem 1.2 \& 1.3 could be shown to be sterol-dependent in mesophyll cells as well as two CPKs (CPK10 \& CPK21) and the protein phosphatase ABI1. AtRem 1.2 \& 1.3 could be proven to represent ideal plant lipid raft marker proteins due to their strong presence in Triton X-100 DRMs and dependency upon a sterol-rich environment. When fluorescence labeled AtRem 1.2 \& 1.3 were transiently expressed in A.th. leaves, they localized to small, patchy structures at the plasma membrane. CPK21 was an intrinsic member of Triton X-100 DRMs and displayed extreme susceptibility to sterol-depletion by MCD in immunological and proteomic assays. Calcium-dependent protein kinases (CPKs) have already been studied to be involved in drought stress regulation, for instance at the regulation of S-type anion channels in guard cells. Hence, further transient expression studies with the anion channel SLAH3, protein kinase CPK21 and its counterpart, protein phosphatase ABI1 were performed in Nicotiana benthamiana. Transient co-expression of CPK21 and the anion channel SLAH3, a highly mesophyll- specific homologue of the guard cell anion channel SLAC1, resulted in a combined, sterol-dependent localization of both proteins in DRMs. Supplementary co-expression of the counterpart protein phosphatase ABI1 induced dislocation of SLAH3 from DRMs, probably by inactivation of the protein kinase CPK21. CPK21 is known to regulate the anion channel SLAH3 by phosphorylation. ABI1 dephosphorylates CPK21 thus leading to deactivation and dislocation of SLAH3 from DRMs. All this regulative events are taking place in DRMs of A.th. mesophyll cells. This study presents the first evidence for a lipid raft-resident protein complex combining signaling and transport functions in A.th. Future perspectives for lipid raft research might target investigations on the lipid raft localization of candidate DRM proteins under presence of abiotic and biotic stress factors. For instance, which alterations in the DRM protein composition are detectable upon exogenous application of the plant hormone ABA? Quantitative proteomics approaches will surely increase our knowledge of the post-transcriptional regulation of gene activity under drought stress conditions.}, subject = {Ackerschmalwand}, language = {en} }