@article{GageikReinthalBenzetal.2014, author = {Gageik, Nils and Reinthal, Eric and Benz, Paul and Montenegro, Sergio}, title = {Complementary Vision based Data Fusion for Robust Positioning and Directed Flight of an Autonomous Quadrocopter}, doi = {10.5121/ijaia.2014.5501}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113621}, year = {2014}, abstract = {The present paper describes an improved 4 DOF (x/y/z/yaw) vision based positioning solution for fully 6 DOF autonomous UAVs, optimised in terms of computation and development costs as well as robustness and performance. The positioning system combines Fourier transform-based image registration (Fourier Tracking) and differential optical flow computation to overcome the drawbacks of a single approach. The first method is capable of recognizing movement in four degree of freedom under variable lighting conditions, but suffers from low sample rate and high computational costs. Differential optical flow computation, on the other hand, enables a very high sample rate to gain control robustness. This method, however, is limited to translational movement only and performs poor in bad lighting conditions. A reliable positioning system for autonomous flights with free heading is obtained by fusing both techniques. Although the vision system can measure the variable altitude during flight, infrared and ultrasonic sensors are used for robustness. This work is part of the AQopterI8 project, which aims to develop an autonomous flying quadrocopter for indoor application and makes autonomous directed flight possible.}, language = {en} } @phdthesis{Dhillon2023, author = {Dhillon, Maninder Singh}, title = {Potential of Remote Sensing in Modeling Long-Term Crop Yields}, doi = {10.25972/OPUS-32258}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-322581}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Accurate crop monitoring in response to climate change at a regional or field scale plays a significant role in developing agricultural policies, improving food security, forecasting, and analysing global trade trends. Climate change is expected to significantly impact agriculture, with shifts in temperature, precipitation patterns, and extreme weather events negatively affecting crop yields, soil fertility, water availability, biodiversity, and crop growing conditions. Remote sensing (RS) can provide valuable information combined with crop growth models (CGMs) for yield assessment by monitoring crop development, detecting crop changes, and assessing the impact of climate change on crop yields. This dissertation aims to investigate the potential of RS data on modelling long-term crop yields of winter wheat (WW) and oil seed rape (OSR) for the Free State of Bavaria (70,550 km2 ), Germany. The first chapter of the dissertation describes the reasons favouring the importance of accurate crop yield predictions for achieving sustainability in agriculture. Chapter second explores the accuracy assessment of the synthetic RS data by fusing NDVIs of two high spatial resolution data (high pair) (Landsat (30 m, 16-days; L) and Sentinel-2 (10 m, 5-6 days; S), with four low spatial resolution data (low pair) (MOD13Q1 (250 m, 16-days), MCD43A4 (500 m, one day), MOD09GQ (250 m, one-day), and MOD09Q1 (250 m, 8-days)) using the spatial and temporal adaptive reflectance fusion model (STARFM), which fills regions' cloud or shadow gaps without losing spatial information. The chapter finds that both L-MOD13Q1 (R2 = 0.62, RMSE = 0.11) and S-MOD13Q1 (R2 = 0.68, RMSE = 0.13) are more suitable for agricultural monitoring than the other synthetic products fused. Chapter third explores the ability of the synthetic spatiotemporal datasets (obtained in chapter 2) to accurately map and monitor crop yields of WW and OSR at a regional scale. The chapter investigates and discusses the optimal spatial (10 m, 30 m, or 250 m), temporal (8 or 16-day) and CGMs (World Food Studies (WOFOST), and the semi-empiric light use efficiency approach (LUE)) for accurate crop yield estimations of both crop types. Chapter third observes that the observations of high temporal resolution (8-day) products of both S-MOD13Q1 and L-MOD13Q1 play a significant role in accurately measuring the yield of WW and OSR. The chapter investigates that the simple light use efficiency (LUE) model (R2 = 0.77 and relative RMSE (RRMSE) = 8.17\%) that required fewer input parameters to simulate crop yield is highly accurate, reliable, and more precise than the complex WOFOST model (R2 = 0.66 and RRMSE = 11.35\%) with higher input parameters. Chapter four researches the relationship of spatiotemporal fusion modelling using STRAFM on crop yield prediction for WW and OSR using the LUE model for Bavaria from 2001 to 2019. The chapter states the high positive correlation coefficient (R) = 0.81 and R = 0.77 between the yearly R2 of synthetic accuracy and modelled yield accuracy for WW and OSR from 2001 to 2019, respectively. The chapter analyses the impact of climate variables on crop yield predictions by observing an increase in R2 (0.79 (WW)/0.86 (OSR)) and a decrease in RMSE (4.51/2.57 dt/ha) when the climate effect is included in the model. The fifth chapter suggests that the coupling of the LUE model to the random forest (RF) model can further reduce the relative root mean square error (RRMSE) from -8\% (WW) and -1.6\% (OSR) and increase the R2 by 14.3\% (for both WW and OSR), compared to results just relying on LUE. The same chapter concludes that satellite-based crop biomass, solar radiation, and temperature are the most influential variables in the yield prediction of both crop types. Chapter six attempts to discuss both pros and cons of RS technology while analysing the impact of land use diversity on crop-modelled biomass of WW and OSR. The chapter finds that the modelled biomass of both crops is positively impacted by land use diversity to the radius of 450 (Shannon Diversity Index ~0.75) and 1050 m (~0.75), respectively. The chapter also discusses the future implications by stating that including some dependent factors (such as the management practices used, soil health, pest management, and pollinators) could improve the relationship of RS-modelled crop yields with biodiversity. Lastly, chapter seven discusses testing the scope of new sensors such as unmanned aerial vehicles, hyperspectral sensors, or Sentinel-1 SAR in RS for achieving accurate crop yield predictions for precision farming. In addition, the chapter highlights the significance of artificial intelligence (AI) or deep learning (DL) in obtaining higher crop yield accuracies.}, subject = {Ernteertrag}, language = {en} } @phdthesis{Babu2021, author = {Babu, Dinesh Kumar}, title = {Efficient Data Fusion Approaches for Remote Sensing Time Series Generation}, doi = {10.25972/OPUS-25180}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-251808}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {Fernerkundungszeitreihen beschreiben die Erfassung von zeitlich gleichm{\"a}ßig verteilten Fernerkundungsdaten in einem festgelegten Zeitraum entweder global oder f{\"u}r ein vordefiniertes Gebiet. F{\"u}r die {\"U}berwachung der Landwirtschaft, die Erkennung von Ver{\"a}nderungen der Ph{\"a}nologie oder f{\"u}r das Umwelt-Monitoring werden nahezu t{\"a}gliche Daten mit hoher r{\"a}umlicher Aufl{\"o}sung ben{\"o}tigt. Bei vielen verschiedenen fernerkundlichen Anwendungen h{\"a}ngt die Genauigkeit von der dichte und der Verl{\"a}sslichkeit der fernerkundlichen Datenreihe ab. Die verschiedenen Fernerkundungssatellitenkonstellationen sind immer noch nicht in der Lage, fast t{\"a}glich oder t{\"a}glich Bilder mit hoher r{\"a}umlicher Aufl{\"o}sung zu liefern, um die Bed{\"u}rfnisse der oben erw{\"a}hnten Fernerkundungsanwendungen zu erf{\"u}llen. Einschr{\"a}nkungen bei den Sensoren, hohe Entwicklungskosten, hohe Betriebskosten der Satelliten und das Vorhandensein von Wolken, die die Sicht auf das Beobachtungsgebiet blockieren, sind einige der Gr{\"u}nde, die es sehr schwierig machen, fast t{\"a}gliche oder t{\"a}gliche optische Fernerkundungsdaten mit hoher r{\"a}umlicher Aufl{\"o}sung zu erhalten. Mit Entwicklungen bei den optischen Sensorsystemen und gut geplanten Fernerkundungssatellitenkonstellationen kann dieser Zustand verbessert werden, doch ist dies mit Kosten verbunden. Selbst dann wird das Problem nicht vollst{\"a}ndig gel{\"o}st sein, so dass der wachsende Bedarf an zeitlich und r{\"a}umlich hochaufl{\"o}senden Daten nicht vollst{\"a}ndig gedeckt werden kann. Da der Datenerfassungsprozess sich auf Satelliten st{\"u}tzt, die physische Systeme sind, k{\"o}nnen diese aus verschiedenen Gr{\"u}nden unvorhersehbar ausfallen und einen vollst{\"a}ndigen Verlust der Beobachtung f{\"u}r einen bestimmten Zeitraum verursachen, wodurch eine L{\"u}cke in der Zeitreihe entsteht. Um den langfristigen Trend der ph{\"a}nologischen Ver{\"a}nderungen aufgrund der sich schnell {\"a}ndernden Umweltbedingungen zu beobachten, sind die Fernerkundungsdaten aus der gegenw{\"a}rtig nicht ausreichend. Hierzu werden auch Daten aus der Vergangenheit ben{\"o}tigt. Eine bessere Alternativl{\"o}sung f{\"u}r dieses Problem kann die Erstellung von Fernerkundungszeitreihen durch die Fusion von Daten mehrerer Fernerkundungssatelliten mit unterschiedlichen r{\"a}umlichen und zeitlichen Aufl{\"o}sungen sein. Dieser Ansatz soll effektiv und effizient sein. Bei dieser Methode kann ein zeitlich und r{\"a}umlich hoch aufgel{\"o}stes Bild von einem Satelliten, wie Sentinel-2 mit einem zeitlich und r{\"a}umlich niedrig aufgel{\"o}sten Bild von einem Satelliten, wie Sentinel-3 fusioniert werden, um synthetische Daten mit hoher zeitlicher und r{\"a}umlicher Aufl{\"o}sung zu erzeugen. Die Erzeugung von Fernerkundungszeitreihen durch Datenfusionsmethoden kann sowohl auf die gegenw{\"a}rtig erfassten Satellitenbilder als auch auf die in der Vergangenheit von den Satelliten aufgenommenen Bilder angewandt werden. Dies wird die dringend ben{\"o}tigten zeitlich und r{\"a}umlich hochaufl{\"o}senden Bilder f{\"u}r Fernerkundungsanwendungen liefern. Dieser vereinfachte Ansatz ist kosteneffektiv und bietet den Forschern die M{\"o}glichkeit, aus der begrenzten Datenquelle, die ihnen zur Verf{\"u}gung steht, die f{\"u}r ihre Anwendung ben{\"o}tigten Daten selbst zu generieren. Ein effizienter Datenfusionsansatz in Kombination mit einer gut geplanten Satellitenkonstellation kann ein L{\"o}sungsansatz sein, um eine nahezu t{\"a}gliche Zeitreihen von Fernerkundungsdaten l{\"u}ckenlos gew{\"a}hrleistet. Ziel dieser Forschungsarbeit ist die Entwicklung eines effizienten Datenfusionsansatzes, um dichte Fernerkundungszeitreihen zu erhalten.}, language = {en} }