@phdthesis{Wurst2015, author = {Wurst, Jan-Eric}, title = {Hp-Finite Elements for PDE-Constrained Optimization}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-024-5 (print)}, doi = {10.25972/WUP-978-3-95826-025-2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115027}, school = {W{\"u}rzburg University Press}, pages = {188}, year = {2015}, abstract = {Diese Arbeit behandelt die hp-Finite Elemente Methode (FEM) f{\"u}r linear quadratische Optimal-steuerungsprobleme. Dabei soll ein Zielfunktional, welches die Entfernung zu einem angestrebten Zustand und hohe Steuerungskosten (als Regularisierung) bestraft, unter der Nebenbedingung einer elliptischen partiellen Differentialgleichung minimiert werden. Bei der Anwesenheit von Steuerungsbeschr{\"a}nkungen k{\"o}nnen die notwendigen Bedingungen erster Ordnung, die typischerweise f{\"u}r numerische L{\"o}sungsverfahren genutzt werden, als halbglatte Projektionsformel formuliert werden. Folglich sind optimale L{\"o}sungen oftmals auch nicht-glatt. Die Technik der hp-Diskretisierung ber{\"u}cksichtigt diese Tatsache und approximiert raue Funktionen auf feinen Gittern, w{\"a}hrend Elemente h{\"o}herer Ordnung auf Gebieten verwendet werden, auf denen die L{\"o}sung glatt ist. Die erste Leistung dieser Arbeit ist die erfolgreiche Anwendung der hp-FEM auf zwei verwandte Problemklassen: Neumann- und Interface-Steuerungsprobleme. Diese werden zun{\"a}chst mit entsprechenden a-priori Verfeinerungsstrategien gel{\"o}st, mit der randkonzentrierten (bc) FEM oder interface konzentrierten (ic) FEM. Diese Strategien generieren Gitter, die stark in Richtung des Randes beziehungsweise des Interfaces verfeinert werden. Um f{\"u}r beide Techniken eine algebraische Reduktion des Approximationsfehlers zu beweisen, wird eine elementweise interpolierende Funktion konstruiert. Außerdem werden die lokale und globale Regularit{\"a}t von L{\"o}sungen behandelt, weil sie entscheidend f{\"u}r die Konvergenzgeschwindigkeit ist. Da die bc- und ic- FEM kleine Polynomgrade f{\"u}r Elemente verwenden, die den Rand beziehungsweise das Interface ber{\"u}hren, k{\"o}nnen eine neue L2- und L∞-Fehlerabsch{\"a}tzung hergeleitet werden. Letztere bildet die Grundlage f{\"u}r eine a-priori Strategie zum Aufdatieren des Regularisierungsparameters im Zielfunktional, um Probleme mit bang-bang Charakter zu l{\"o}sen. Zudem wird die herk{\"o}mmliche hp-Idee, die daraus besteht das Gitter geometrisch in Richtung der Ecken des Gebiets abzustufen, auf die L{\"o}sung von Optimalsteuerungsproblemen {\"u}bertragen (vc-FEM). Es gelingt, Regularit{\"a}t in abz{\"a}hlbar normierten R{\"a}umen f{\"u}r die Variablen des gekoppelten Optimalit{\"a}tssystems zu zeigen. Hieraus resultiert die exponentielle Konvergenz im Bezug auf die Anzahl der Freiheitsgrade. Die zweite Leistung dieser Arbeit ist die Entwicklung einer v{\"o}llig adaptiven hp-Innere-Punkte-Methode, die Probleme mit verteilter oder Neumann Steuerung l{\"o}sen kann. Das zugrundeliegende Barriereproblem besitzt ein nichtlineares Optimilit{\"a}tssystem, das eine numerische Herausforderung beinhaltet: die stabile Berechnung von Integralen {\"u}ber Funktionen mit m{\"o}glichen Singularit{\"a}ten in Elementen h{\"o}herer Ordnung. Dieses Problem wird dadurch gel{\"o}st, dass die Steuerung an den Integrationspunkten {\"u}berwacht wird. Die Zul{\"a}ssigkeit an diesen Punkten wird durch einen Gl{\"a}ttungsschritt garantiert. In dieser Arbeit werden sowohl die Konvergenz eines Innere-Punkte-Verfahrens mit Gl{\"a}ttungsschritt als auch a-posteriori Schranken f{\"u}r den Diskretisierungsfehler gezeigt. Dies f{\"u}hrt zu einem adaptiven L{\"o}sungsalgorithmus, dessen Gitterverfeinerung auf der Entwicklung der L{\"o}sung in eine Legendre Reihe basiert. Hierbei dient das Abklingverhalten der Koeffizienten als Glattheitsindikator und wird f{\"u}r die Entscheidung zwischen h- und p-Verfeinerung herangezogen.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Seyferth2001, author = {Seyferth, Michael}, title = {Numerische Modellierungen kontinentaler Kollisionszonen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3220}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Orogene Prozesse in kontinentalen Kollisionszonen werden in zwei- und dreidimensionalen numerischen Modellen auf Basis der Finite-Elemente Methode (FEM) untersucht. Dabei stehen die Verteilung der Deformation innerhalb der Modellkruste, die korrespondierenden Spannungsfelder und die aus Temperaturfelddaten und Partikelpfaden abgeleitete metamorphe Entwicklung von Krustengesteinen im Vordergrund. Die Studie gliedert sich in einen methodischen Teil, umfangreiche Parameterstudien und spezielle Anwendungen auf fossile und rezente Orogene. Kontinentale Kollisionszonen sind - insbesondere in den tieferen Krustenstockwerken - durch hohe Betr{\"a}ge penetrativer Deformation gekennzeichnet. Im methodischen Teil der Arbeit wird eine Technik vorgestellt, mit deren Hilfe Verformungen des beobachteten Umfangs mit dem auf rein LAGRANGEscher Formulierung basierenden kommerziellen FE-Programmpaket ANSYS® modelliert werden k{\"o}nnen. Die speziell f{\"u}r Fragestellungen orogener Krustendynamik entwickelten Programmpakete OROTRACK bzw. OROTRACK3D umfassen Neuvernetzungs- und Ergebnisverwaltungsalgorithmen, die eine Modellierung von Konvergenzbetr{\"a}gen bis zu mehreren hundert Kilometern erlauben. Zus{\"a}tzlich k{\"o}nnen mittels einer Schnittstelle zu Oberfl{\"a}chenmodellen die Folgen exogener Prozesse auf die orogene Dynamik ber{\"u}cksichtigt werden. Weitere Charakteristika der Modellierungstechnik sind eine vollst{\"a}ndige thermomechanische Kopplung, die Anwendung differenzierter Materialeigenschaften f{\"u}r verschiedene Krustenstockwerke sowie die M{\"o}glichkeit, die Deformation - den lokal herrschenden Druck- und Temperaturbedingungen entsprechend - entweder durch spr{\"o}de oder duktile Materialgesetze zu approximieren. Die zur Beschreibung eines Kollisionsszenarios aufgebrachten Randbedingungen basieren auf den Grundlagen eines Mantelsubduktionsmodells (Willett et al. 1993). In 2D-Modellen wird ebene Verformung in einem Schnitt durch die kontinentale Kruste zweier kollidierender Platten modelliert, die basal einer vom lithosph{\"a}rischen Mantel aufgepr{\"a}gten Verschiebung unterliegen. Wird der lithosph{\"a}rische Mantel der linken Platte an einem Punkt S unter die rechte Platte subduziert, ergibt sich f{\"u}r den linken Modellteil eine horizontale Verschiebung der Modellbasis nach rechts, w{\"a}hrend im rechten Modellteil keine Verschiebung der Modellbasis erlaubt ist. Im Bereich des Punktes S kommt es zu einer Diskontinuit{\"a}t der basalen Geschwindigkeit und somit zu maximaler Deformation. In publizierten Kollisionsmodellen, die auf {\"a}hnlichen Ans{\"a}tzen beruhen, wird h{\"a}ufig rein spr{\"o}des Materialverhalten angenommen oder der duktile Anteil der Kruste durch geringe Krustentemperaturen klein und hochviskos gehalten. Unter diesen Bedingungen kann eng auf das Orogenzentrum lokalisierte Deformation mit einem typischerweise bivergenten Strukturmuster abgebildet werden (Willett et al. 1993 u.a.). Demgegen{\"u}ber beweist eine erste Reihe zweidimensionaler Parameterstudien eine starke Abh{\"a}ngigkeit des beobachteten Deformationsmusters von den herrschenden Krustentemperaturen und der Konvergenzrate. Bei h{\"o}heren Krustentemperaturen bildet sich demnach ein Entkopplungshorizont an der Krustenbasis, der f{\"u}r die oberen Krustenstockwerke eine verbreiterte und diffuse Deformationszone bedingt und die erzielte Krustenverdickung limitiert. {\"U}ber die Verformungsratenabh{\"a}ngigkeit des duktilen Materialverhaltens und den unterschiedlichen Grad thermischer Reequilibrierung innerhalb der verdickten Kruste haben Variationen der Konvergenzrate {\"a}hnliche Auswirkungen auf das orogene Deformationsmuster. Verbesserte Modelle mit Neuvernetzungstechnik werden in Parameterstudien getestet, die den Einfluss unterschiedlicher Temperatur-Viskosit{\"a}tsfunktionen auf die Lokalisierung der Deformation und die resultierende synkonvergente Exhumierung metamorpher Gesteine quantifizieren. Ein rheologisches Verhalten, das eine effiziente mechanische Kopplung innerhalb des Krustenprofils gew{\"a}hrleistet, ist demzufolge nicht nur Voraussetzung f{\"u}r lokalisierte Krustenverdickung, sondern auch f{\"u}r rasche Exhumierung von Unterkrustengesteinen durch ein Zusammenspiel von Erosion und isostatischer Hebung. Die Modelle zeigen weiter, dass maximale Exhumierungsbetr{\"a}ge bei rheologisch vergleichsweise festem Verhalten der Unterkruste erzielt werden. Im Einzelnen kann die Variabilit{\"a}t der Versenkungs- und Exhumierungsgeschichte von Materialpunkten im Modellschnitt aus synthetischen PT-Pfaden ersehen werden. Der Wirkungskomplex um Krustentemperaturen, orogene Deformationslokalisierung und synkonvergente Exhumierung ist f{\"u}r die Kollisionsphase der variscischen Orogenese in Mitteleuropa von besonderer Bedeutung. Hochtemperaturmetamorphose und weitverbreitete granitoide Intrusionst{\"a}tigkeit sind hier Ausdruck hoher Krustentemperaturen; dennoch sind an den Grenzen der klassischen tektonometamorphen Einheiten - im Bereich von Schwarzwald und Vogesen sowie der Mitteldeutschen Kristallinschwelle (MDKS) - eng lokalisierte Teilorogene mit bivergentem Strukturmuster sowie eine rasche synkonvergente Exhumierung amphibolitfazieller Gesteine dokumentiert. Ein solches Nebeneinander ist aus Sicht der Parameterstudien nur durch eine vergleichsweise hochviskose Unterkrustenrheologie zu erkl{\"a}ren. In einer Fallstudie zur MDKS kommen in neueren experimentellen Arbeiten bestimmte Kriechparameter (Mackwell et al. 1998) zur Anwendung, mit denen ein derartiges Materialverhalten simuliert werden kann. Der in den reflexionsseismischen Profilen DEKORP 2N und 2S dokumentierte großmaßst{\"a}bliche Strukturbau im Bereich des rhenohercynischen Falten- und {\"U}berschiebungsg{\"u}rtels, der MDKS und des saxothuringischen Beckens, sowie die an heute exhumierten Gesteine bestimmten metamorphen Maximalbedingungen k{\"o}nnen auf dieser Grundlage numerisch reproduziert werden. Eine Erweiterung der Modellierungstechnik auf dreidimensionale FE-Modelle dient der Ber{\"u}cksichtigung orogenparalleler Deformation, die im Randbereich von Kollisionszonen in effektivem Materialtransport resultieren kann; diese Prozesse sind u.a. als „tectonic escape" (Burke \& Seng{\"o}r 1986) oder „lateral extrusion" (Ratschbacher et al. 1991b) beschrieben worden. Unter der Annahme orthogonaler Konvergenz wird im 3D-Modell der Mantelsubduktionsansatz der 2D-Modelle zun{\"a}chst in orogenparalleler Richtung extrudiert (Randbereich des Kollisionsorogens). Im angrenzenden, hinteren Teil des Modells (laterales Vorland des Kollisionsorogens) ist die Modellbasis dagegen keiner Verschiebung oder Fixierung unterworfen. Die Modellr{\"a}nder unterliegen hier einer sogenannten „no-tilt"-Bedingung, die eine differentielle Horizontalverschiebung initial {\"u}bereinanderliegender Knoten verbietet. In einer Reihe von Parameterstudien werden das kinematische Muster, die r{\"a}umliche Verteilung der Deformation und die zeitlichen Variationen des oberfl{\"a}chlichen Spannungsfelds untersucht, die sich bei modifizierten Randbedingungen ergeben. Laterale Extrusion ist demnach im Randbereich von Kollisionsorogenen trotz unterschiedlichster Modellszenarien stets pr{\"a}sent. Da die Lateralbewegungen zeitgleich mit der Kollision einsetzen und im Laufe der weiteren konvergenten Krustenverk{\"u}rzung nur wenig beschleunigt werden, ist der von horizontalen Kr{\"a}ften ausgel{\"o}ste „tectonic escape" der dominierende Prozess, w{\"a}hrend gravitativ induzierte Bewegungen nur eine sekund{\"a}re Rolle spielen. Rigide Modellr{\"a}nder in Teilen des lateralen Vorlands modifizieren sowohl Umfang als auch Verteilung der Horizontalbewegungen, ihre Auswirkungen auf das Orogen selbst sind dagegen vergleichsweise gering. Variationen der Krustentemperaturen, der Konvergenzrate und der Unterkrustenrheologie beeinflussen dagegen sowohl die orogene Deformation als auch die des lateralen Vorlands. Unter der Annahme einer festen, isotropen Kopplung zwischen der Krustenbasis und dem bewegten lithosph{\"a}rischen Mantel werden Extrusionsraten simuliert, die 30\% der Konvergenzrate nicht {\"u}berschreiten. Bis zu 70\% k{\"o}nnen dagegen erreicht werden, wenn eine orogenparallele Beweglichkeit der Modellbasis gestattet wird. Die {\"u}berragende Bedeutung dieser basalen Randbedingung erlaubt eine Interpretation des mioz{\"a}nen lateralen Extrusionsereignisses in den Ostalpen (z.B. Ratschbacher et al. 1991a). Wenn im Bereich der heutigen Ostalpen zu Beginn der lateralen Extrusion noch kein orogene Topographie bestand (Frisch et al. 1998), fand laterale Extrusion zeitgleich mit bedeutender Krustenverdickung statt; dies spricht f{\"u}r eine Dominanz des von horizontalen Kr{\"a}ften induzierten Prozesses „tectonic escape" {\"u}ber gravitatives Kollabieren. In jedem Fall legt das in etwa ausgeglichene Verh{\"a}ltnis zwischen Plattenkonvergenz und lateraler Extrusion die Existenz eines basalen Entkopplungshorizonts nahe. Andere Faktoren, die zur Erkl{\"a}rung des Extrusionsereignisses herangezogen werden, z.B. die Indentation der S{\"u}dalpen oder ein extensives Regime im Bereich des Pannonischen Beckens, k{\"o}nnen das Deformationsmuster beeinflusst haben, die beobachteten Verschiebungsbetr{\"a}ge sind damit jedoch aus Sicht der Modellstudien nicht plausibel zu machen. Aufgrund ihres großen Maßstabs lassen sich die Verh{\"a}ltnisse bei der Kollision Indiens mit der Eurasischen Platte bislang nur ph{\"a}nomenologisch mit den Modellergebnissen vergleichen. Eine skalierte Fallstudie bleibt somit eine Herausforderung f{\"u}r zuk{\"u}nftige FE-Modelle.}, subject = {Subduktion}, language = {de} } @phdthesis{Pechmann2008, author = {Pechmann, Patrick R.}, title = {Penalized Least Squares Methoden mit st{\"u}ckweise polynomialen Funktionen zur L{\"o}sung von partiellen Differentialgleichungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-28136}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2008}, abstract = {Das Hauptgebiet der Arbeit stellt die Approximation der L{\"o}sungen partieller Differentialgleichungen mit Dirichlet-Randbedingungen durch Splinefunktionen dar. Partielle Differentialgleichungen finden ihre Anwendung beispielsweise in Bereichen der Elektrostatik, der Elastizit{\"a}tstheorie, der Str{\"o}mungslehre sowie bei der Untersuchung der Ausbreitung von W{\"a}rme und Schall. Manche Approximationsaufgaben besitzen keine eindeutige L{\"o}sung. Durch Anwendung der Penalized Least Squares Methode wurde gezeigt, dass die Eindeutigkeit der gesuchten L{\"o}sung von gewissen Minimierungsaufgaben sichergestellt werden kann. Unter Umst{\"a}nden l{\"a}sst sich sogar eine h{\"o}here Stabilit{\"a}t des numerischen Verfahrens gewinnen. F{\"u}r die numerischen Betrachtungen wurde ein umfangreiches, effizientes C-Programm erstellt, welches die Grundlage zur Best{\"a}tigung der theoretischen Voraussagen mit den praktischen Anwendungen bildete.}, subject = {Approximationstheorie}, language = {de} } @phdthesis{Mueller2013, author = {M{\"u}ller, Thomas M.}, title = {Computergest{\"u}tztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid-Aluminiumoxid Keramiken}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-110942}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Die Mikrostruktur von Zirkonoxid-Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen {\"a}quivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repr{\"a}sentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachtr{\"a}glich hinzugef{\"u}g. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE f{\"u}r die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache {\"U}bernahme der Voxelstrukturen in hexaedrische Elemente f{\"u}hrt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zun{\"a}chst eine adaptive Oberfl{\"a}chenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verk{\"u}rzen ohne die Genauigkeit der FES zu beeintr{\"a}chtigen, wurden die Oberfl{\"a}chenvernetzungen dergestalt vereinfacht, dass eine hohe Aufl{\"o}sung an den Ecken und Kanten der Strukturen erhalten blieb, w{\"a}hrend sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberfl{\"a}chenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und f{\"u}r die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zun{\"a}chst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Ber{\"u}cksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute {\"U}bereinstimmung zwischen den experimentellen und simulierten Werten bez{\"u}glich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einfl{\"u}sse verschiedener mikrostruktureller Parameter, wie Porosit{\"a}t, Korngr{\"o}ße und Komposition, auf das makroskopische Materialverhalten n{\"a}her zu untersuchen.}, subject = {Keramischer Werkstoff}, language = {de} } @phdthesis{Kessler2000, author = {Keßler, Manuel}, title = {Die Ladyzhenskaya-Konstante in der numerischen Behandlung von Str{\"o}mungsproblemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2791}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Charakteristisch f{\"u}r die L{\"o}sbarkeit von elliptischen partiellen Differentialgleichungssystemen mit Nebenbedingungen ist das Auftreten einer inf-sup-Bedingung. Im prototypischen Fall der Stokes-Gleichungen ist diese auch als Ladyzhenskaya-Bedingung bekannt. Die G{\"u}ltigkeit dieser Bedingung, bzw. die Existenz der zugeh{\"o}rigen Konstante ist eine Eigenschaft des Gebietes, innerhalb dessen die Differentialgleichung gel{\"o}st werden soll. W{\"a}hrend die Existenz schon die L{\"o}sbarkeit garantiert, ist beispielsweise f{\"u}r Fehleraussagen bei der numerischen Approximation auch die Gr{\"o}ße der Konstanten sehr wichtig. Insbesondere auch deshalb, weil eine {\"a}hnliche inf-sup-Bedingung auch bei der Diskretisierung mittel Finiter-Elemente-Methoden auftaucht, die hier Babuska-Brezzi-Bedingung heißt. Die Arbeit befaßt sich auf der einen Seite mit einer analytischen Absch{\"a}tzung der Ladyzhenskaya-Konstante f{\"u}r verschiedene Gebiete, wobei {\"A}quivalenzen mit verwandten Problemen aus der komplexen Analysis (Friedrichs-Ungleichung) und der Strukturmechanik (Kornsche Ungleichung) benutzt werden. Ein weiterer Teil befaßt sich mit dem Zusammenhang zwischen kontinuierlicher Ladyzhenskaya- Konstante und diskreter Babuska-Brezzi-Konstante. Die dabei gefundenen Ergebnisse werden mit Hilfe eines dazu entwickelten leistungsf{\"a}higen Finite-Elemente-Programmsystems numerisch verifiziert. Damit k{\"o}nnen erstmals genaue Absch{\"a}tzungen der Konstanten in zwei und drei Dimensionen gefunden werden. Aufbauend auf diesen Resultaten wird ein schneller L{\"o}sungsalgorithmus f{\"u}r die Stokes-Gleichungen vorgeschlagen und anhand von problematischen Gebieten dessen {\"U}berlegenheit gegen{\"u}ber klassischen Verfahren wie beispielsweise der Uzawa-Iteration demonstriert. W{\"a}hrend selbst bei einfachen Geometrien eine Konvergenzbeschleunigung um einen Faktor 5 erwartet werden kann, sind in kritischen F{\"a}llen Faktoren bis zu 1000 m{\"o}glich.}, subject = {Stokes-Gleichung}, language = {de} } @phdthesis{Iuga2007, author = {Iuga, Maria}, title = {Ab Initio and Finite Element Simulations of Material Properties in Multiphase Ceramics}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-26246}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {In the present study numerical methods are employed within the framework of multiscale modeling. Quantum mechanics and finite element method simulations have been used in order to calculate thermoelastic properties of ceramics. At the atomic scale, elastic constants of ten different ceramics (Al2O3, alpha- and beta-SiC, TiO2-rutile and anatase, AlN, BN, CaF2, TiB2, ZrO2) were calculated from the first principles (ab-initio) using the density functional theory with the general gradient approximation. The simulated elastic moduli were compared with measured values. These results have shown that the ab-initio computations can be used independently from experiment to predict elastic behavior and can provide a basis for the modeling of structural and elastic properties of more complex composite ceramics. In order to simulate macroscopic material properties of composite ceramics from the material properties of the constituting phases, 3D finite element models were used. The influence of microstructural features such as pores and grain boundaries on the effective thermoelastic properties is studied through a diversity of geometries like truncated spheres in cubic and random arrangement, modified Voronoi polyhedra, etc. A 3D model is used for modeling the microstructure of the ceramic samples. The measured parameters, like volume fractions of the two phases, grain size ratios and grain boundary areas are calculated for each structure. The theoretical model is then varied to fit the geometrical data derived from experimental samples. The model considerations are illustrated on two types of bi-continuous materials, a porous ceramic, alumina (Al2O3) and a dense ceramic, zirconia-alumina composite (ZA). For the present study, alumina samples partially sintered at temperatures between 800 and 1320 C, with fractional densities between 58.4\% and 97\% have been used. For ZA ceramic the zirconia powder was partially stabilized and the ratio between alumina and zirconia was varied. For these two examples of ceramics, Young's modulus and thermal conductivity were calculated and compared to experimental data of samples of the respective microstructure. Comparing the experimental and simulated values of Young's modulus for Al2O3 ceramic a good agreement was obtained. For the thermal conductivity the consideration of thermal boundary resistance (TBR) was necessary. It was shown that for different values of TBR the experimental data lie within the simulated thermal conductivities. In the case of ZA ceramic also a good agreement between simulated and experimental values was observed. For smaller ZrO2 fractions, a larger Young's modulus and thermal conductivity was observed in the experimental samples. The discrepancies have been discussed by taking into account the effect of pressure. Considering the dependence of the thermoelastic properties on the pressure, it has been shown that the thermal stresses resulting from the cooling process were insufficient to explain the discrepancies between experimental and simulated thermoelastic properties.}, subject = {Finite-Elemente-Methode}, language = {en} } @phdthesis{Herrmann2021, author = {Herrmann, Marc}, title = {The Total Variation on Surfaces and of Surfaces}, doi = {10.25972/OPUS-24073}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-240736}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {This thesis is concerned with applying the total variation (TV) regularizer to surfaces and different types of shape optimization problems. The resulting problems are challenging since they suffer from the non-differentiability of the TV-seminorm, but unlike most other priors it favors piecewise constant solutions, which results in piecewise flat geometries for shape optimization problems.The first part of this thesis deals with an analogue of the TV image reconstruction approach [Rudin, Osher, Fatemi (Physica D, 1992)] for images on smooth surfaces. A rigorous analytical framework is developed for this model and its Fenchel predual, which is a quadratic optimization problem with pointwise inequality constraints on the surface. A function space interior point method is proposed to solve it. Afterwards, a discrete variant (DTV) based on a nodal quadrature formula is defined for piecewise polynomial, globally discontinuous and continuous finite element functions on triangulated surface meshes. DTV has favorable properties, which include a convenient dual representation. Next, an analogue of the total variation prior for the normal vector field along the boundary of smooth shapes in 3D is introduced. Its analysis is based on a differential geometric setting in which the unit normal vector is viewed as an element of the two-dimensional sphere manifold. Shape calculus is used to characterize the relevant derivatives and an variant of the split Bregman method for manifold valued functions is proposed. This is followed by an extension of the total variation prior for the normal vector field for piecewise flat surfaces and the previous variant of split Bregman method is adapted. Numerical experiments confirm that the new prior favours polyhedral shapes.}, subject = {Gestaltoptimierung}, language = {en} } @phdthesis{Brockmann2018, author = {Brockmann, Dorothea E. R.}, title = {Gef{\"u}ge-Simulationen an Nicht-Oxid-Keramiken: Korrelation zwischen Mikrostruktur und makroskopischen Eigenschaften}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-157255}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Die experimentelle Verbesserung der makroskopischen Eigenschaften (z. B. thermische oder mechanische Eigenschaften) von Keramiken ist aufgrund der zahlreichen erforderlichen Experimente zeitaufw{\"a}ndig und kostenintensiv. Simulationen hingegen k{\"o}nnen die Korrelation von Mikrostruktur und makroskopischen Eigenschaften nutzen, um die Eigenschaften von beliebigen Gef{\"u}gekompositionen zu berechnen. In bisherigen Simulationen wurden meist stark vereinfachte Modelle herangezogen, welche die Mikrostruktur einer Keramik nur sehr grob widerspiegeln und deshalb keine zuverl{\"a}ssigen Ergebnisse liefern. In der vorliegenden Arbeit wird die Mikrostruktur-Eigenschafts-Korrelation der drei wichtigsten Nicht-Oxid-Keramiken untersucht. Dies sind Aluminiumnitrid (AlN), Siliciumnitrid (Si3N4) und Siliciumcarbid (SiC). Diese drei Keramiktypen vertreten die h{\"a}ufigsten Mikrostrukturtypen, welche bei Nicht-Oxid-Keramiken auftreten k{\"o}nnen. Zu jedem Keramiktyp liegen zwei verschiedene Proben vor. Alle drei untersuchten Keramiktypen sind zweiphasig. Die Hauptphase von AlN und Si3N4 besteht aus keramischen K{\"o}rnern, die Nebenphase erstarrt w{\"a}hrend der Sinterung aus den zugesetzten Sinteradditiven. Die Restporosit{\"a}t von AlN und Si3N4 wird als vernachl{\"a}ssigbar angesehen und in den Simulationen nicht ber{\"u}cksichtigt. Bei den SiC-Proben handelt es sich um Keramiken mit bimodaler Korngr{\"o}{\"y}enverteilung. Durch Infiltration mit fl{\"u}ssigem Silicium wurden die Hohlr{\"a}ume zwischen den K{\"o}rnern aufgef{\"u}llt, um porenfreie SiSiC-Proben zu erhalten. Anhand von Simulationen werden zun{\"a}chst reale Mikrostrukturen in Anlehnung an vorliegende Vergleichsproben nachgebildet. Diese Modelle werden durch Abgleich mit rasterelektronenmikroskopischen 2D-Aufnahmen der Proben verifiziert. An den Modellen werden mit der Methode der Finite-Element-Simulation makroskopische Eigenschaften (W{\"a}rmeleitf{\"a}higkeit, Elastizit{\"a}tsmodul und Poisson-Zahl) der Keramiken simuliert und mit experimentellen Messungen an den vorliegenden Proben abgeglichen. Der Vergleich der Mikrostruktur von den computergenerierten Gef{\"u}gen und den vorliegenden Proben zeigt in der Mustererkennung durch das menschliche Auge und quantitativ in den Gef{\"u}geparametern eine gute {\"U}bereinstimmung. F{\"u}r die makroskopischen Eigenschaften wird auf der Basis einer ausf{\"u}hrlichen Literaturrecherche zu den Materialparametern der beteiligten Phasen eine gute {\"U}bereinstimmung zwischen den experimentell gemessenen und den simulierten Eigenschaften erreicht. Evtl. auftretende Abweichungen zwischen Experiment und Simulation k{\"o}nnen damit erkl{\"a}rt werden, dass die Proben Verunreinigungen enthalten, da aus der Literatur bekannt ist, dass Verunreinigungen eine Verschlechterung der W{\"a}rmeleitf{\"a}higkeit bewirken. Nachdem die G{\"u}ltigkeit der Modelle verifiziert ist, wird der Einfluss von charakteristischen Mikrostrukturparametern und Phaseneigenschaften auf die W{\"a}rmeleitf{\"a}higkeit, den Elastizit{\"a}tsmodul und die Poisson-Zahl der Keramiken untersucht. Hierzu werden die Mikrostrukturparameter von AlN und Si3N4 gezielt um die Parameter der vorliegenden Vergleichsproben variiert. Bei beiden Keramiktypen werden die Volumenanteile der beteiligten Phasen sowie die mittlere Sehnenl{\"a}nge der keramischen K{\"o}rner ver{\"a}ndert. Bei den AlN-Keramiken wird zus{\"a}tzlich der Dihedralwinkel variiert, welcher Auskunft {\"u}ber den Benetzungsgrad der Fl{\"u}ssigphase gibt; bei den Si3N4-Keramiken ist das Achsenverh{\"a}ltnis der langgezogenen Si3N4-K{\"o}rner von Interesse und wird deshalb ebenfalls variiert. Es zeigt sich, dass die Aufteilung der Teilvolumina zwischen den zwei Phasen den gr{\"o}ßten Einfluss auf die Eigenschaften der Keramik hat, w{\"a}hrend die {\"u}brigen Mikrostrukturparameter nur eine untergeordnete Rolle spielen. Um die Qualit{\"a}t der Simulationen zu {\"u}berpr{\"u}fen, wird die Simulationsreihe an AlN mit unterschiedlicher Aufteilung der Volumina zwischen den beiden Phasen in Relation zu etablierten Modellen aus der Literatur (Mischungsregel und Modell nach Ondracek) gesetzt. Alle Simulationsergebnisse f{\"u}r die W{\"a}rmeleitf{\"a}higkeit und den Elastizit{\"a}tsmodul liegen innerhalb der jeweils oberen und unteren Grenze beider Modelle. Es konnte also eine Verbesserung gegen{\"u}ber den etablierten Modellen erzielt werden. An allen drei Keramiktypen wird der Einfluss der Materialeigenschaften der Haupt- und Nebenphase auf die makroskopischen Eigenschaften der Keramik untersucht. Hierf{\"u}r werden die W{\"a}rmeleitf{\"a}higkeit, der Elastizit{\"a}tsmodul und die Poisson-Zahl der Phasen getrennt voneinander {\"u}ber einen gr{\"o}ßeren Bereich variiert. Es stellt sich heraus, dass es vom Keramiktyp und dem Volumenanteil der Nebenphase abh{\"a}ngt, wie stark der Einfluss einer Komponenteneigenschaft auf die Eigenschaft der Keramik ist. Mit den im Rahmen dieser Arbeit durchgef{\"u}hrten Simulationen wird der Einfluss von Mikrostrukturparametern und Phaseneigenschaften berechnet. Auf der Grundlage dieser Simulationen k{\"o}nnen die Architektur des Gef{\"u}ges simuliert und die Eigenschaften von Keramiken f{\"u}r individuelle Anwendungen berechnet werden. Dies ist die Basis f{\"u}r die Produktion von maßgeschneiderten Keramiken. Zudem k{\"o}nnen mit den validierten Mikrostrukturmodellen die Eigenschaften von unbekannten Mischphasen ermittelt werden, was experimentell oft nicht m{\"o}glich ist.}, subject = {Aluminiumnitrid}, language = {de} }