@article{VonhofSirenFeuerstein1990, author = {Vonhof, S. and Sir{\´e}n, Anna-Leena and Feuerstein, Giora}, title = {Volume-dependent spatial distribution of microinjected thyrotropin-releasing hormone (TRH) into the medial preoptic nucleus of the rat}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-47421}, year = {1990}, abstract = {The present study was performed to qua ntify the distribution of a peptide neurotransmitter after microinjection into the medial preoptic area (POM), using a technique suitable for conscious animal preparations. The results indicate that only 50-ni volumes of injected tracer were sufficiently localized with 77 ± 9\% recovery in the POM. Injections of higher volumes resulted in an increasing spread of tracer into distant anatomical regions and structures, including the needle tract and cerebral ventricles. The amount of tracer localized in the POM decreased to 38±4\% (200 nl) (P < 0.05) and 41 ±8\% (500 nl) (P <0.05), respectively. The data suggest that the volume of injection is critical for intraparenchymal injections into structures of a diameter of I mm or less, such as the POM and should not exceed 50 nl in conscious animal preparations.}, subject = {Neurophysiologie}, language = {en} } @phdthesis{Rumpf2023, author = {Rumpf, Florian}, title = {Optogenetic stimulation of AVP neurons in the anterior hypothalamus promotes wakefulness}, doi = {10.25972/OPUS-31549}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-315492}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {The mammalian central clock, located in the suprachiasmatic nucleus (SCN) of the anterior hypothalamus, controls circadian rhythms in behaviour such as the sleep-wake cycle. It is made up of approximately 20,000 heterogeneous neurons that can be classified by their expression of neuropeptides. There are three major populations: AVP neurons (arginine vasopressin), VIP neurons (vasoactive intestinal peptide), and GRP neurons (gastrin releasing peptide). How these neuronal clusters form functional units to govern various aspects of rhythmic behavior is poorly understood. At a molecular level, biological clocks are represented by transcriptional-posttranslational feedback loops that induce circadian oscillations in the electrical activity of the SCN and hence correlate with behavioral circadian rhythms. In mammals, the sleep wake cycle can be accurately predicted by measuring electrical muscle and brain activity. To investigate the link between the electrical activity of heterogeneous neurons of the SCN and the sleep wake cycle, we optogenetically manipulated AVP neurons in vivo with SSFO (stabilized step function opsin) and simultaneously recorded an electroencephalogram (EEG) and electromyogram (EMG) in freely moving mice. SSFO-mediated stimulation of AVP positive neurons in the anterior hypothalamus increased the total amount of wakefulness during the hour of stimulation. Interestingly, this effect led to a rebound in sleep in the hour after stimulation. Markov chain sleep-stage transition analysis showed that the depolarization of AVP neurons through SSFO promotes the transition from all states to wakefulness. After the end of stimulation, a compensatory increase in transitions to NREM sleep was observed. Ex vivo, SSFO activation in AVP neurons causes depolarization and modifies the activity of AVP neurons. Therefore, the results of this thesis project suggest an essential role of AVP neurons as mediators between circadian rhythmicity and sleep-wake behaviour.}, subject = {Schlaf}, language = {en} } @article{ReuterJaeckelsKneitzetal.2019, author = {Reuter, Isabel and J{\"a}ckels, Jana and Kneitz, Susanne and Kuper, Jochen and Lesch, Klaus-Peter and Lillesaar, Christina}, title = {Fgf3 is crucial for the generation of monoaminergic cerebrospinal fluid contacting cells in zebrafish}, series = {Biology Open}, volume = {8}, journal = {Biology Open}, doi = {10.1242/bio.040683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200749}, pages = {bio040683}, year = {2019}, abstract = {In most vertebrates, including zebrafish, the hypothalamic serotonergic cerebrospinal fluid-contacting (CSF-c) cells constitute a prominent population. In contrast to the hindbrain serotonergic neurons, little is known about the development and function of these cells. Here, we identify fibroblast growth factor (Fgf)3 as the main Fgf ligand controlling the ontogeny of serotonergic CSF-c cells. We show that fgf3 positively regulates the number of serotonergic CSF-c cells, as well as a subset of dopaminergic and neuroendocrine cells in the posterior hypothalamus via control of proliferation and cell survival. Further, expression of the ETS-domain transcription factor etv5b is downregulated after fgf3 impairment. Previous findings identified etv5b as critical for the proliferation of serotonergic progenitors in the hypothalamus, and therefore we now suggest that Fgf3 acts via etv5b during early development to ultimately control the number of mature serotonergic CSF-c cells. Moreover, our analysis of the developing hypothalamic transcriptome shows that the expression of fgf3 is upregulated upon fgf3 loss-of-function, suggesting activation of a self-compensatory mechanism. Together, these results highlight Fgf3 in a novel context as part of a signalling pathway of critical importance for hypothalamic development.}, language = {en} } @phdthesis{Reuter2020, author = {Reuter, Isabel}, title = {Development and function of monoaminergic systems in the brain of zebrafish}, doi = {10.25972/OPUS-20408}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204089}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {This thesis explores the development of monoaminergic systems in the central nervous system (CNS) of zebrafish. The serotonergic cells of the hypothalamus pose the main focus of the present work. Most vertebrates except for mammals possess serotonin (5-HT) synthesising cells in more than one region of the CNS. In zebrafish such regions are, e.g. the hypothalamus, the raphe nuclei and the spinal cord. Serotonin functions as a neurotransmitter and neuromodulator in the CNS. Presumably due to its neuromodulatory tasks hypothalamic serotonergic cells are in contact with the cerebrospinal fluid (CSF), which expands the field of potential serotonergic targets tremendously. This highlights that serotonergic CSF-contacting (CSF-c) cells are vital for the execution of many functions and behaviours. Further, the hypothalamic serotonergic clusters constitute the largest population of serotonergic cells in the CNS of zebrafish. Together, these facts emphasise the need to understand the development and function of serotonergic CSF-c cells in the hypothalamus. Few studies have dealt with this subject, hence, information about the development of these cells is scarce. The zinc-finger transcription factor fezf2, and Fibroblast growth factor (Fgf)-signalling via the ETS-domain transcription factor etv5b are known to regulate serotonergic cell development in the hypothalamus (Bosco et al., 2013; Rink and Guo, 2004). However, the main Fgf ligand responsible for this mediation has not been determined prior to this work. The present thesis identifies Fgf3 as a crucial Fgf ligand. To achieve this result three independent strategies to impair Fgf3 activity have been applied to zebrafish embryos: the fgf3t24152 mutant, an fgf3 morpholino-based knock-down and the CRISPR/Cas9 technique. The investigations show that Fgf3 regulates the development of monoaminergic CSF-c cells in the hypothalamus. Additionally, Fgf3 impacts on cells expressing the peptide hormone arginine vasopressin (avp). Most interestingly, the requirement for Fgf3 by these cells follows a caudo-rostral gradient with a higher dependence on Fgf3 by caudal cells. This also seems to be the case for dopaminergic CSF-c cells in the hypothalamus (Koch et al., 2014). Moreover, etv5b a downstream target of Fgf-signalling is demonstrated to be under the control of Fgf3. With regard to serotonergic CSF-c cell development, it is shown that fgf3 is expressed several hours before tph1a and 5-HT (Bellipanni et al., 2002; Bosco et al., 2013). Together with the result that the hypothalamus is already smaller before mature serotonergic CSF-c cells appear, this argues for an early impact of Fgf3 on serotonergic specification. This hypothesis is supported by several findings in this study: the universal decrease of proliferating cells in the hypothalamus and simultaneous increase of cell death after fgf3 impairment. Complementary cell fate experiments confirm that proliferating serotonergic progenitors need Fgf3 to commit serotonergic specification. Further, these results corroborate findings of an earlier study stating that hypothalamic serotonergic progenitors require Fgf-signalling via etv5b to maintain the progenitor pool (Bosco et al., 2013). Additionally, the transcriptome of the hypothalamus has been analysed and 13 previously overlooked transcripts of Fgf ligands are expressed at developmental stages. The transcriptome analysis provides evidence for a self-compensatory mechanism of fgf3 since expression of fgf3 is upregulated as a consequence of its own impairment. Moreover, the Fgf-signalling pathway appears to be mildly affected by fgf3 manipulation. Together, Fgf-signalling and especially Fgf3 are established to be of critical importance during hypothalamic development with effects on serotonergic, dopaminergic CSF-c and avp expressing cells. Furthermore, this thesis provides two strategies to impair the tph1a gene. Both strategies will facilitate investigations regarding the function of hypothalamic serotonergic CSF-c cells. Finally, the presented findings in this study provide insights into the emergence of the posterior recess region of the hypothalamus, thereby, contributing to the understanding of the evolution of the vertebrate hypothalamus.}, subject = {Hypothalamus}, language = {en} } @article{FeuersteinZerbeSiren1991, author = {Feuerstein, G. and Zerbe, R. L. and Sir{\´e}n, Anna-Leena}, title = {Supraoptic nuclei in vasopressin and hemodynamic responses to hemorrhage in rats}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63057}, year = {1991}, abstract = {CARDIOVASCULAR and vasopressin (A VP) responses to hcmorrhagc wcrc studicd in rats with lesions of the hypothalamic supraoptic nuclei (SONL). Bleeding caused hypotension and increase in heart rate (HR) and A VP. SONL rats failed to fully recover from bleeding as compared to normal rats. Plasma A VP in SONL rats was in the normal in basal conditions, but failed to increase to levels attained in normal rats throughout the post-hemorrhage period. These data suggcst that the supraoptic nuclei are the primary regulatory sitcs for A VP release in rcsponse to hemorrhage and that lack of adequate A VP release significantly retards blood pressure recovery after bleeding.}, subject = {Neurobiologie}, language = {en} } @article{FeuersteinSiren1988, author = {Feuerstein, G. and Sir{\´e}n, Anna-Leena}, title = {Hypothalamic µ-receptors in the cardiovascular control: a review}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-63228}, year = {1988}, abstract = {The endogenous opioid system includes three major families of peptides [22): dynorphins (derived from pre-proenkephalin B); endorphins (derived from pre-proopiomelanocortin) and enkephalins (derived from pre-proenkephalin A). Multiple species of opioid peptides are derived from these major precursors and many of them possess potent cardiovascular properties. Multiple forms of opioid receptors have been defined in the central nervous system. Although the relationship of these receptors to the multiple actions of the opioid systems is not weil understood, some predications can be made: in vitro the dynorphin-related peptidesbind preferentially to kappa-opioid receptors; the enkephalins bind preferentially to delta and JL-opioid receptors and while beta-endorphin binds to mu- and delta-, but not to kappa-opioid receptors. While littleis known on the roJe ofthe opioid system in normal cardiovascular regulation, it has become clear that cardiovascular stress situations substantially modify the activity ofthe endogenous opioid system. This review focuses on the mu-opioid system in the hypothalamus with special emphasis on its potential roJe in cardiovascular control of both normal and pathophysiologic states.}, subject = {Neurobiologie}, language = {en} }