@article{ZoungranaConradAmekudzietal.2015, author = {Zoungrana, Benewinde Jean-Bosco and Conrad, Christopher and Amekudzi, Leonard K. and Thiel, Michael and Dapola Da, Evariste and Forkuor, Gerald and L{\"o}w, Fabian}, title = {Multi-Temporal Landsat Images and Ancillary Data for Land Use/Cover Change (LULCC) Detection in the Southwest of Burkina Faso, West Africa}, series = {Remote Sensing}, volume = {7}, journal = {Remote Sensing}, number = {9}, doi = {10.3390/rs70912076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-125866}, pages = {12076-12102}, year = {2015}, abstract = {Accurate quantification of land use/cover change (LULCC) is important for efficient environmental management, especially in regions that are extremely affected by climate variability and continuous population growth such as West Africa. In this context, accurate LULC classification and statistically sound change area estimates are essential for a better understanding of LULCC processes. This study aimed at comparing mono-temporal and multi-temporal LULC classifications as well as their combination with ancillary data and to determine LULCC across the heterogeneous landscape of southwest Burkina Faso using accurate classification results. Landsat data (1999, 2006 and 2011) and ancillary data served as input features for the random forest classifier algorithm. Five LULC classes were identified: woodland, mixed vegetation, bare surface, water and agricultural area. A reference database was established using different sources including high-resolution images, aerial photo and field data. LULCC and LULC classification accuracies, area and area uncertainty were computed based on the method of adjusted error matrices. The results revealed that multi-temporal classification significantly outperformed those solely based on mono-temporal data in the study area. However, combining mono-temporal imagery and ancillary data for LULC classification had the same accuracy level as multi-temporal classification which is an indication that this combination is an efficient alternative to multi-temporal classification in the study region, where cloud free images are rare. The LULCC map obtained had an overall accuracy of 92\%. Natural vegetation loss was estimated to be 17.9\% ± 2.5\% between 1999 and 2011. The study area experienced an increase in agricultural area and bare surface at the expense of woodland and mixed vegetation, which attests to the ongoing deforestation. These results can serve as means of regional and global land cover products validation, as they provide a new validated data set with uncertainty estimates in heterogeneous ecosystems prone to classification errors.}, language = {en} } @phdthesis{Seitzer2024, author = {Seitzer, Moritz}, title = {Quality and composition of anthelmintic medicines available in Eastern and Western Africa: an \({in-vitro}\) analysis of Albendazole, Mebendazole and Praziquantel}, doi = {10.25972/OPUS-35094}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-350947}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2024}, abstract = {Even though the international combat against Neglected Tropical Diseases such as schistosomiasis or soil-transmitted helminthiases depends on reliable therapeutics, anthelminthic pharmacovigilance has been neglected on many national African drug markets. Therefore, quality and composition of 88 different batches of Albendazole, Mebendazole and Praziquantel locally collected from randomly selected facilities in Western Burkina Faso, Southeast C{\^o}te d'Ivoire, Southwest Ghana and Northwest Tanzania were analysed. Visual examination of both packaging and samples was performed according to the WHO 'Be Aware' tool. Products were then screened with the GPHF Minilab, consisting of tests of mass uniformity, disintegration times and thin-layer chromatography (TLC). Confirmatory tests were performed according to international pharmacopoeiae, applying assays for dissolution profiles and high-performance liquid chromatography (HPLC). Despite minor irregularities, appearance of the products did not hint at falsified medicines. However, 19.6 \% of the brands collected in Ghana and Tanzania were not officially licensed for sale. Mass uniformity was confirmed in 53 out of 58 brands of tablets. 41 out of 56 products passed disintegration times; 10 out of the 15 failing products did not disintegrate at all. TLC results did not reveal any falsifications or pronounced dosing errors. HPLC findings confirmed the TLC results despite shifted specification limits: ten of the 83 tested batches contained less than 90 \%, none more than 110 \% label claim. However, no more than 46.3 \% (31 / 67) of the tablet batches assayed passed the respective criteria for dissolution. In the four study countries, no falsified anthelminthic medicine was encountered. The active pharmaceutical ingredient was not found to either exceed or distinctively fall below specification limits. Galenic characteristics as most critical criteria however, especially dissolution profiles, revealed substantial deficits.}, subject = {Wurmmittel}, language = {en} } @article{PaethPaxianSeinetal.2017, author = {Paeth, Heiko and Paxian, Andreas and Sein, Dimitry V. and Jacob, Daniela and Panitz, Hans-J{\"u}rgen and Warscher, Michael and Fink, Andreas H. and Kunstmann, Harald and Breil, Marcus and Engel, Thomas and Krause, Andreas and Toedter, Julian and Ahrens, Bodo}, title = {Decadal and multi-year predictability of the West African monsoon and the role of dynamical downscaling}, series = {Meteorologische Zeitschrift}, volume = {26}, journal = {Meteorologische Zeitschrift}, number = {4}, doi = {10.1127/metz/2017/0811}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-172018}, pages = {363-377}, year = {2017}, abstract = {West African summer monsoon precipitation is characterized by distinct decadal variability. Due to its welldocumented link to oceanic boundary conditions in various ocean basins it represents a paradigm for decadal predictability. In this study, we reappraise this hypothesis for several sub-regions of sub-Saharan West Africa using the new German contribution to the coupled model intercomparison project phase 5 (CMIP5) near-term prediction system. In addition, we assume that dynamical downscaling of the global decadal predictions leads to an enhanced predictive skill because enhanced resolution improves the atmospheric response to oceanic forcing and landsurface feedbacks. Based on three regional climate models, a heterogeneous picture is drawn: none of the regional climate models outperforms the global decadal predictions or all other regional climate models in every region nor decade. However, for every test case at least one regional climate model was identified which outperforms the global predictions. The highest predictive skill is found in the western and central Sahel Zone with correlation coefficients and mean-square skill scores exceeding 0.9 and 0.8, respectively.}, language = {en} } @article{LandmannSchrammColditzetal.2010, author = {Landmann, Tobias and Schramm, Matthias and Colditz, Rene R. and Dietz, Andreas and Dech, Stefan}, title = {Wide Area Wetland Mapping in Semi-Arid Africa Using 250-Meter MODIS Metrics and Topographic Variables}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-68628}, year = {2010}, abstract = {Wetlands in West Africa are among the most vulnerable ecosystems to climate change. West African wetlands are often freshwater transfer mechanisms from wetter climate regions to dryer areas, providing an array of ecosystem services and functions. Often wetland-specific data in Africa is only available on a per country basis or as point data. Since wetlands are challenging to map, their accuracies are not well considered in global land cover products. In this paper we describe a methodology to map wetlands using well-corrected 250-meter MODIS time-series data for the year 2002 and over a 360,000 km2 large study area in western Burkina Faso and southern Mali (West Africa). A MODIS-based spectral index table is used to map basic wetland morphology classes. The index uses the wet season near infrared (NIR) metrics as a surrogate for flooding, as a function of the dry season chlorophyll activity metrics (as NDVI). Topographic features such as sinks and streamline areas were used to mask areas where wetlands can potentially occur, and minimize spectral confusion. 30-m Landsat trajectories from the same year, over two reference sites, were used for accuracy assessment, which considered the area-proportion of each class mapped in Landsat for every MODIS cell. We were able to map a total of five wetland categories. Aerial extend of all mapped wetlands (class "Wetland") is 9,350 km2, corresponding to 4.3\% of the total study area size. The classes "No wetland"/"Wetland" could be separated with very high certainty; the overall agreement (KHAT) was 84.2\% (0.67) and 97.9\% (0.59) for the two reference sites, respectively. The methodology described herein can be employed to render wide area base line information on wetland distributions in semi-arid West Africa, as a data-scarce region. The results can provide (spatially) interoperable information feeds for inter-zonal as well as local scale water assessments.}, subject = {Geologie}, language = {en} } @phdthesis{Konrad2015, author = {Konrad, Tillmann}, title = {Governance of Protected Areas in West Africa - The case of the W-Arly-Pendjari (WAP) Complex in Benin and Burkina Faso}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-115331}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Protected areas are the central strategy for preserving biodiversity in the face of overexploitation and global change. To ensure their long-term survival, however, these areas may not be regarded as last havens of wilderness, but as complex social-ecological systems. Modern approaches of protected area (PA) management support this view by balancing conservation and development issues in a sustainable way and adapted to the local context. However, success of these strategies in achieving their aims so far remains limited. This study therefore aimed at analysing processes and outcomes of PA co-management approaches implemented in a large transfrontier conservation area in West Africa. The W-Arly-Pendjari (WAP) complex spans over more than 30.000 square km in Benin, Burkina Faso and Niger and is composed of approximately 20 subunits. Due to national legal and administrative variety as well as a high diversity of local (project) implementation approaches, the general setting resembled a quasi-experimental design facilitating comparative studies. A mix of quantitative (e.g. survey of 549 households) and qualitative (e.g. expert interviews, literature review) methods was used to evaluate the institutional and organisational differences of PA management approaches implemented in the different parts of WAP belonging to Benin and Burkina Faso. I included an analysis of contextual factors (e.g. land-cover-change) and ecological data, but concentrated on the role of local resource users within the co-management arrangements and the effectiveness of governance regimes to deliver positive socio-economic outputs. Exploring the question whether promotion of development in PA surroundings indeed stipulates conservation success (and vice versa) remained challenging: the lack of sound ecological data, a general mismatch of spatial scale in existing data sets, as well as the high complexity of realities on the ground made me refrain from using simplified proxy indicators and (statistical) modelling approaches. I found that the Sudano-Sahelian context is a very difficult one for the implementation of effective participation approaches in the short-term. Political, demographic, socio-economic as well as ecological factors generated a very dynamic situation characterized by limited financial and natural resources as well as weak institutional and organisational settings. Arenas of interaction were often marked rather by a high degree of distrust and competition than by cooperation among actors. Amid all rhetoric, participation in most cases was hence limited to the transfer of (sparse) information, regulated resource access and financial funds. Options for participation of local resource users in decision-making arenas were generally scarce. Underlying processes were dominated by opacity and often low accountability of actors on all levels. Negative, but also positive affection of local residents by PA existence and management hence was high. Governance regimes of the complex performed very differently with regard to their ability of effectively empowering local village participatory bodies (vpb), generating and distributing benefits to individuals and village communities as well as providing mechanisms of conflict resolution. People around Pendjari enjoyed a relative wealth of high value benefits, while negative impacts caused by human-wildlife conflicts were widespread around the complex. Autochthonous farmers usually were better integrated in incentive schemes than were newcomers or herders. While there was functional separation of actors' roles in all parts of WAP, these roles differed significantly between blocks. Existence and functioning of village participatory bodies ameliorated the situation for local resource users fundamentally, as they acted as cut-points between different networks (governmental hierarchies, private concessionaires and local resource users). Vpbs in the Pendjari region proved to be most advanced in their capacity to push resource users' claims in action arenas on the micro-level. Via their union, these associations also managed to impact arenas on the meso- and the macro scale. Project interventions often had catalyst functions to empower local resource users and their vbps. However, they also contributed to social imbalance and intra-organisational competition. My results represent a snapshot of an ongoing process to establish effective co-governance regimes in the WAP-area. Though I identified a large scope of shortcomings, there were also very promising initiatives underway. This work is therefore meant to foster future research and further positive development by giving guidance scholars and decision-makers form the local to the global level alike.}, subject = {Gesch{\"u}tzte Natur}, language = {en} } @article{KnauerGessnerFensholtetal.2016, author = {Knauer, Kim and Gessner, Ursula and Fensholt, Rasmus and Kuenzer, Claudia}, title = {An ESTARFM Fusion Framework for the Generation of Large-Scale Time Series in Cloud-Prone and Heterogeneous Landscapes}, series = {Remote Sensing}, volume = {8}, journal = {Remote Sensing}, number = {5}, doi = {10.3390/rs8050425}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-180712}, pages = {425}, year = {2016}, abstract = {Monitoring the spatio-temporal development of vegetation is a challenging task in heterogeneous and cloud-prone landscapes. No single satellite sensor has thus far been able to provide consistent time series of high temporal and spatial resolution for such areas. In order to overcome this problem, data fusion algorithms such as the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) have been established and frequently used in recent years to generate high-resolution time series. In order to make it applicable to larger scales and to increase the input data availability especially in cloud-prone areas, an ESTARFM framework was developed in this study introducing several enhancements. An automatic filling of cloud gaps was included in the framework to make best use of available, even partly cloud-covered Landsat images. Furthermore, the ESTARFM algorithm was enhanced to automatically account for regional differences in the heterogeneity of the study area. The generation of time series was automated and the processing speed was accelerated significantly by parallelization. To test the performance of the developed ESTARFM framework, MODIS and Landsat-8 data were fused for generating an 8-day NDVI time series for a study area of approximately 98,000 km\(^{2}\) in West Africa. The results show that the ESTARFM framework can accurately produce high temporal resolution time series (average MAE (mean absolute error) of 0.02 for the dry season and 0.05 for the vegetative season) while keeping the spatial detail in such a heterogeneous, cloud-prone region. The developments introduced within the ESTARFM framework establish the basis for large-scale research on various geoscientific questions related to land degradation, changes in land surface phenology or agriculture}, language = {en} } @techreport{Kleinsorg2017, type = {Working Paper}, author = {Kleinsorg, Lea Kristin}, title = {Die Entwicklung der Staatlichkeit der Republik Gambia w{\"a}hrend Yahya Jammehs Amtszeit}, issn = {2199-4315}, doi = {10.25972/OPUS-15450}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-154500}, pages = {71}, year = {2017}, abstract = {Die westafrikanische Republik Gambia wurde zwei Jahrzehnte lang von Yayha Jammeh regiert. 1994 putschte er sich an die Macht und behielt diese vier Legislaturperioden lang, bis er im Dezember 2016 die Pr{\"a}sidentschaftswahlen {\"u}berraschend gegen seinen Konkurrenten Adama Barrow verlor. Die vorliegende Arbeit untersucht die Entwicklung der Staatlichkeit der Republik Gambia w{\"a}hrend Jammehs Amtszeit. F{\"u}r den Zeitraum seit der Staatsgr{\"u}ndung im Jahr 1965 bis zur ersten Erhebung durch den US-amerikanischen Think Tank Fund for Peace 2006 gibt es keine umfassende Untersuchung {\"u}ber den Zustand der gambischen Staatlichkeit. Durch die Anwendung der Theorie fragiler Staatlichkeit nach Ulrich Schneckener soll mit der vorliegenden Arbeit ein Teil dieser L{\"u}cke geschlossen werden. Dazu werden f{\"u}r jede der vier Legislaturperioden Jammehs die von Schneckener benannten Staatsfunktionen (Sicherheit, Legitimit{\"a}t/Rechtsstaatlichkeit, Wohlfahrt) einzeln untersucht, um anschließend den Zustand der Staatlichkeit Gambias einzuordnen. Dazu werden sowohl quantitative als auch qualitative Daten einschließlich Experteninterviews verwendet. Anhand eines Vergleichs der einzelnen Typologisierungen ist es m{\"o}glich, abschließend ein Gesamtbild der Entwicklung der gambischen Staatlichkeit w{\"a}hrend Jammehs Amtszeit zu zeichnen.}, subject = {Gambia}, language = {de} } @article{ForkuorConradThieletal.2014, author = {Forkuor, Gerald and Conrad, Christopher and Thiel, Michael and Ullmann, Tobias and Zoungrana, Evence}, title = {Integration of Optical and Synthetic Aperture Radar Imagery for Improving Crop Mapping in Northwestern Benin, West Africa}, doi = {10.3390/rs6076472}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113070}, year = {2014}, abstract = {Crop mapping in West Africa is challenging, due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. To address this challenge, we integrated high spatial resolution multi-temporal optical (RapidEye) and dual polarized (VV/VH) SAR (TerraSAR-X) data to map crops and crop groups in northwestern Benin using the random forest classification algorithm. The overall goal was to ascertain the contribution of the SAR data to crop mapping in the region. A per-pixel classification result was overlaid with vector field boundaries derived from image segmentation, and a crop type was determined for each field based on the modal class within the field. A per-field accuracy assessment was conducted by comparing the final classification result with reference data derived from a field campaign. Results indicate that the integration of RapidEye and TerraSAR-X data improved classification accuracy by 10\%-15\% over the use of RapidEye only. The VV polarization was found to better discriminate crop types than the VH polarization. The research has shown that if optical and SAR data are available for the whole cropping season, classification accuracies of up to 75\% are achievable.}, language = {en} } @phdthesis{Forkuor2014, author = {Forkuor, Gerald}, title = {Agricultural Land Use Mapping in West Africa Using Multi-sensor Satellite Imagery}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108687}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Rapid population growth in West Africa has led to expansion in croplands due to the need to grow more food to meet the rising food demand of the burgeoning population. These expansions negatively impact the sub-region's ecosystem, with implications for water and soil quality, biodiversity and climate. In order to appropriately monitor the changes in croplands and assess its impact on the ecosystem and other environmental processes, accurate and up-to-date information on agricultural land use is required. But agricultural land use mapping (i.e. mapping the spatial distribution of crops and croplands) in West Africa has been challenging due to the unavailability of adequate satellite images (as a result of excessive cloud cover), small agricultural fields and a heterogeneous landscape. This study, therefore, investigated the possibilities of improving agricultural land use mapping by utilizing optical satellite images with higher spatial and temporal resolution as well as images from Synthetic Aperture Radar (SAR) systems which are near-independent of weather conditions. The study was conducted at both watershed and regional scales. At watershed scale, classification of different crop types in three watersheds in Ghana, Burkina Faso and Benin was conducted using multi-temporal: (1) only optical images (RapidEye) and (2) optical plus dual polarimetric (VV/VH) SAR images (TerraSAR-X). In addition, inter-annual or short term (2-3 years) changes in cropland area in the past ten years were investigated using historical Landsat images. Results obtained indicate that the use of only optical images to map different crop types in West Africa can achieve moderate classification accuracies (57\% to 71\%). Overlaps between the cropping calendars of most crops types and certain inter-croppings pose a challenge to optical images in achieving an adequate separation between those crop classes. Integration of SAR images, however, can improve classification accuracies by between 8 and 15\%, depending on the number of available images and their acquisition dates. The sensitivity of SAR systems to different crop canopy architectures and land surface characteristics improved the separation between certain crop types. The VV polarization of TerraSAR-X was found to better discrimination between crop types than the VH. Images acquired between August and October were found to be very useful for crop mapping in the sub-region due to structural differences in some crop types during this period. At the regional scale, inter-annual or short term changes in cropland area in the Sudanian Savanna agro-ecological zone in West Africa were assessed by upscaling historical cropland information derived at the watershed scale (using Landsat imagery) unto a coarse spatial resolution, but geographically large, satellite imagery (MODIS) using regression based modeling. The possibility of using such regional scale cropland information to improve government-derived agricultural statistics was investigated by comparing extracted cropland area from the fractional cover maps with district-level agricultural statistics from Ghana The accuracy of the fractional cover maps (MAE between 14.2\% and 19.1\%) indicate that the heterogeneous agricultural landscape of West Africa can be suitably represented at the regional or continental scales by estimating fractional cropland cover on low resolution Analysis of the results revealed that cropland area in the Sudanian Savanna zone has experienced inter-annual or short term fluctuations in the past ten years due to a variety of factors including climate factors (e.g. floods and droughts), declining soil fertility, population increases and agricultural policies such as fertilizer subsidies. Comparison of extracted cropland area from the fractional cover maps with government's agricultural statistics (MoFA) for seventeen districts (second administrative units) in Ghana revealed high inconsistencies in the government statistics, and highlighted the potential of satellite derived cropland information at regional scales to improve national/sub-national agricultural statistics in West Africa. The results obtained in this study is promising for West Africa, considering the recent launch of optical (Landsat 8) and SAR sensors (Sentinel-1) that will provide free data for crop mapping in the sub-region. This will improve chances of obtaining adequate satellite images acquired during the cropping season for agricultural land use mapping and bolster opportunities of operationalizing agricultural land use mapping in West Africa. This can benefit a wide range of biophysical and economic models and improve decision making based on their results.}, subject = {Westafrika}, language = {en} } @article{ErmertFinkMorseetal.2012, author = {Ermert, Volker and Fink, Andreas H. and Morse, Andrew P. and Paeth, Heiko}, title = {The Impact of Regional Climate Change on Malaria Risk due to Greenhouse Forcing and Land-Use Changes in Tropical Africa}, series = {Environmental Health Perspectives}, volume = {120}, journal = {Environmental Health Perspectives}, number = {1}, doi = {10.1289/ehp.1103681}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135562}, pages = {77-84}, year = {2012}, abstract = {BACKGROUND: Climate change will probably alter the spread and transmission intensity of malaria in Africa. OBJECTIVES: In this study, we assessed potential changes in the malaria transmission via an integrated weather disease model. METHODS: We simulated mosquito biting rates using the Liverpool Malaria Model (LMM). The input data for the LMM were bias-corrected temperature and precipitation data from the regional model (REMO) on a 0.5 degrees latitude longitude grid. A Plasmodium falciparum infection model expands the LMM simulations to incorporate information on the infection rate among children. Malaria projections were carried out with this integrated weather disease model for 2001 to 2050 according to two climate scenarios that include the effect of anthropogenic land-use and land-cover changes on climate. RESULTS: Model-based estimates for the present climate (1960 to 2000) are consistent with observed data for the spread of malaria in Africa. In the model domain, the regions where malaria is epidemic are located in the Sahel as well as in various highland territories. A decreased spread of malaria over most parts of tropical Africa is projected because of simulated increased surface temperatures and a significant reduction in annual rainfall. However, the likelihood of malaria epidemics is projected to increase in the southern part of the Sahel. In most of East Africa, the intensity of malaria transmission is expected to increase. Projections indicate that highland areas that were formerly unsuitable for malaria will become epidemic, whereas in the lower-altitude regions of the East African highlands, epidemic risk will decrease. CONCLUSIONS: We project that climate changes driven by greenhouse-gas and land-use changes will significantly affect the spread of malaria in tropical Africa well before 2050. The geographic distribution of areas where malaria is epidemic might have to be significantly altered in the coming decades.}, language = {en} }