@phdthesis{Stahl2005, author = {Stahl, Rainer}, title = {Electroactive Conjugated Polymers as Charge-Transport Materials for Optoelectronic Thin-Film Devices}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-16980}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {In this work the electrochemical and spectroelectrochemical properties of a series of pi-conjugated organic polymers were studied. The polymers were deposited on platinum electrodes or ITO-coated glass substrates by potentiodynamic electro-polymerisation of the corresponding monomeric precursor molecules. The electro-chemical and photophysical properties of the triarylborane monomers were studied in detail in order to estimate possible influences on the behaviour of the corresponding polymer. The first part of this work aimed at the synthesis and investigation of conjugated donor-acceptor polymers which combine the prerequisites of an OLED within one material: the transport of positive and negative charges and the formation of emissive excited states. With the carbazole-substituted oxadiazoles 1-3 it was shown that on the one hand the carbazole functionality is suitable for enabling the electrochemical polymerisation of the monomers and on the other hand it facilitates reversible p-doping of the resultant polymers. Although n-doping of poly-1-poly-3 is possible due to the electron-deficient oxadiazole rings, it causes the continuous degradation of these electron-acceptor units. Interestingly, this process does not influence the capability of p-doping of the polymers. With respect to its electrochemical and spectroelectrochemical properties the behaviour of the borane polymer poly-4 is absolutely identical with that of the oxadiazole polymers. Moreover, the optical excitation of poly-4 in the solid state leads to the emission of blue-green light which suggests that this polymer might also possess electroluminescent properties. AFM-measurements of poly-4 films on ITO-coated glass substrates revealed, that the film thickness can be controlled to a certain extent by the number of polymerisation redox cycles. It was shown from the electrochemical and photophysical properties of the triarylboranes 4-6 that the pi-pi-interaction between boron and nitrogen atoms is comparably weak in these molecules. This leads to an unexpected ground-state polarisation with a partially positive boron atom and a partially negative nitrogen atom. Moreover, it was found that TAB 4 possesses a lower symmetry than D3 in solution and that excitation energy can be transferred amongst the three subchromophores of 4. By titration experiments it was also demonstrated that TAB 4 can reversibly bind fluoride ions and that the binding event significantly influences the optical absorption characteristics of the chromophore. It can be assumed, that the above mentioned properties, which have a profound influence on the photophysical behaviour of these triarylborane chromophores, also determine the behaviour of the corresponding polymer in a solid state environment. The aim of the second part of this work was the investigation of purely n-conducting materials based on electron-deficient borane and viologen polymers. The corresponding precursor molecules should be polymerised on platinum electrodes by reductive electropolymerisation. However, a reductive polymerisation was not possible for the borane monomer 19 which is thought to be due to a strong localisation of the unpaired electron on the central boron atom of the radical anion. An electropolymerisation of the cyano-substituted bispyridinio-compound 17 failed because of the poor quality of CN- as a leaving group. Thus, a synthesis of the analogous isomer 18 was developed, in which the cyano-substituents were exchanged by the better leaving group Cl-. The viologen polymer poly-18, which can be regarded as an electron-deficient iso-electronic analogue of poly(para-phenylene), was successfully deposited on a platinum electrode by reductive electropolymerisation of 18. Poly-18 can be reversibly n-doped at comparably low potentials; however, at higher potentials the polymer is overcharged and destroyed irreversibly. As the synthetic strategy for 18 allows the variation of both spacer unit and leaving group in the last two steps of the reaction sequence, a series of analogous compounds can be easily synthesised using this route.}, subject = {Polymerhalbleiter}, language = {en} } @article{RienschSwobodaLiketal.2021, author = {Riensch, Nicolas Alexander and Swoboda, Lukas and Lik, Artur and Krummenacher, Ivo and Braunschweig, Holger and Helten, Holger}, title = {Conjugated Bis(triarylboranes) with Disconnected Conjugation}, series = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, volume = {647}, journal = {Zeitschrift f{\"u}r anorganische und allgemeine Chemie}, number = {5}, doi = {10.1002/zaac.202000476}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-258020}, pages = {421-424}, year = {2021}, abstract = {A series of methylene-bridged bis(triarylboranes) has been synthesized via two complementary routes using metal-free catalytic Si/B exchange condensation under mild conditions. The title compounds comprise two borane moieties that show effective internal π-conjugation involving the respective boron centers and the adjacent hetaryl groups. Conjugation between both borane units, however, is disrupted by the aliphatic linker. Cyclic voltammetry revealed minimal electronic communication between the boron centers, as evidenced by two closely spaced reduction processes. The UV-vis spectra showed bathochromic shifted absorption bands compared to related monoboranes, which is attributed to the methylene bridge. A further red-shift results upon introduction of methyl or SiMe\(_3\) groups at the terminal thiophene rings.}, language = {en} } @article{LenczykRoyNitschetal.2019, author = {Lenczyk, Carsten and Roy, Dipak Kumar and Nitsch, J{\"o}rn and Radacki, Krzysztof and Rauch, Florian and Dewhurst, Rian D. and Bickelhaupt, F. Matthias and Marder, Todd B. and Braunschweig, Holger}, title = {Steric Effects Dictate the Formation of Terminal Arylborylene Complexes of Ruthenium from Dihydroboranes}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {59}, issn = {1521-3765}, doi = {10.1002/chem.201902890}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219537}, pages = {13566-13571}, year = {2019}, abstract = {The steric and electronic properties of aryl substituents in monoaryl borohydrides (Li[ArBH\(_3\)]) and dihydroboranes were systematically varied and their reactions with [Ru(PCy\(_3\))\(_2\)HCl(H\(_2\))] (Cy: cyclohexyl) were studied, resulting in bis(σ)-borane or terminal borylene complexes of ruthenium. These variations allowed for the investigation of the factors involved in the activation of dihydroboranes in the synthesis of terminal borylene complexes. The complexes were studied by multinuclear NMR spectroscopy, mass spectrometry, X-ray diffraction analysis, and density functional theory (DFT) calculations. The experimental and computational results suggest that the ortho-substitution of the aryl groups is necessary for the formation of terminal borylene complexes.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on the One- and Two-Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-212887}, pages = {13164 -- 13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{GriesbeckMichailRauchetal.2019, author = {Griesbeck, Stefanie and Michail, Evripidis and Rauch, Florian and Ogasawara, Hiroaki and Wang, Chenguang and Sato, Yoshikatsu and Edkins, Robert M. and Zhang, Zuolun and Taki, Masayasu and Lambert, Christoph and Yamaguchi, Shigehiro and Marder, Todd B.}, title = {The Effect of Branching on One- and Two-Photon Absorption, Cell Viability and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging}, series = {Chemistry - A European Journal}, volume = {25}, journal = {Chemistry - A European Journal}, number = {57}, doi = {10.1002/chem.201902461}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204829}, pages = {13164-13175}, year = {2019}, abstract = {Two different chromophores, namely a dipolar and an octupolar system, were prepared and their linear and nonlinear optical properties as well as their bioimaging capabilities were compared. Both contain triphenylamine as the donor and a triarylborane as the acceptor, the latter modified with cationic trimethylammonio groups to provide solubility in aqueous media. The octupolar system exhibits a much higher two-photon brightness, and also better cell viability and enhanced selectivity for lysosomes compared with the dipolar chromophore. Furthermore, both dyes were applied in two-photon excited fluorescence (TPEF) live-cell imaging.}, language = {en} } @article{FergerRogerKoesteretal.2022, author = {Ferger, Matthias and Roger, Chantal and K{\"o}ster, Eva and Rauch, Florian and Lorenzen, Sabine and Krummenacher, Ivo and Friedrich, Alexandra and Košćak, Marta and Nestić, Davor and Braunschweig, Holger and Lambert, Christoph and Piantanida, Ivo and Marder, Todd B.}, title = {Electron-Rich EDOT Linkers in Tetracationic bis-Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity}, series = {Chemistry - A European Journal}, volume = {28}, journal = {Chemistry - A European Journal}, number = {48}, doi = {10.1002/chem.202201130}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-287241}, year = {2022}, abstract = {Three novel tetracationic bis-triarylboranes with 3,4-ethylenedioxythiophene (EDOT) linkers, and their neutral precursors, showed significant red-shifted absorption and emission compared to their thiophene-containing analogues, with one of the EDOT-derivatives emitting in the NIR region. Only the EDOT-linked trixylylborane tetracation was stable in aqueous solution, indicating that direct attachment of a thiophene or even 3-methylthiophene to the boron atom is insufficient to provide hydrolytic stability in aqueous solution. Further comparative analysis of the EDOT-linked trixylylborane tetracation and its bis-thiophene analogue revealed efficient photo-induced singlet oxygen production, with the consequent biological implications. Thus, both analogues bind strongly to ds-DNA and BSA, very efficiently enter living human cells, accumulate in several different cytoplasmic organelles with no toxic effect but, under intense visible light irradiation, they exhibit almost instantaneous and very strong cytotoxic effects, presumably attributed to singlet oxygen production. Thus, both compounds are intriguing theranostic agents, whose intracellular and probably intra-tissue location can be monitored by strong fluorescence, allowing switching on of the strong bioactivity by well-focused visible light.}, language = {en} } @article{FergerBergerRauchetal.2021, author = {Ferger, Matthias and Berger, Sarina M. and Rauch, Florian and Sch{\"o}nitz, Markus and R{\"u}he, Jessica and Krebs, Johannes and Friedrich, Alexandra and Marder, Todd B.}, title = {Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Bench-Stable Boron Precursors}, series = {Chemistry—A European Journal}, volume = {27}, journal = {Chemistry—A European Journal}, number = {35}, doi = {10.1002/chem.202100632}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256827}, pages = {9094-9101}, year = {2021}, abstract = {A novel and convenient methodology for the one-pot synthesis of sterically congested triarylboranes by using bench-stable aryltrifluoroborates as the boron source is reported. This procedure gives systematic access to symmetrically and unsymmetrically substituted triarylboranes of the types BAr\(_{2}\)Ar' and BArAr'Ar'', respectively. Three unsymmetrically substituted triarylboranes as well as their iridium-catalyzed C-H borylation products are reported. These borylated triarylboranes contain one to three positions that can subsequently be orthogonally functionalized in follow-up reactions, such as Suzuki-Miyaura cross-couplings or Sonogashira couplings.}, language = {en} } @article{FergerBanKrošletal.2021, author = {Ferger, Matthias and Ban, Željka and Krošl, Ivona and Tomić, Sanja and Dietrich, Lena and Lorenzen, Sabine and Rauch, Florian and Sieh, Daniel and Friedrich, Alexandra and Griesbeck, Stefanie and Kenđel, Adriana and Miljanić, Snežana and Piantanida, Ivo and Marder, Todd B.}, title = {Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs}, series = {Chemistry-A European Journal}, volume = {27}, journal = {Chemistry-A European Journal}, number = {16}, doi = {10.1002/chem.202005141}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-256717}, pages = {5142-5159}, year = {2021}, abstract = {We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3-5. Pronounced aggregation-deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3-5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging.}, language = {en} } @article{BergerFergerMarder2021, author = {Berger, Sarina M. and Ferger, Matthias and Marder, Todd B.}, title = {Synthetic Approaches to Triarylboranes from 1885 to 2020}, series = {Chemistry - A European Journal}, volume = {27}, journal = {Chemistry - A European Journal}, number = {24}, doi = {10.1002/chem.202005302}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-238952}, pages = {7043 -- 7058}, year = {2021}, abstract = {In recent years, research in the fields of optoelectronics, anion sensors and bioimaging agents have been greatly influenced by novel compounds containing triarylborane motifs. Such compounds possess an empty p-orbital at boron which results in useful optical and electronic properties. Such a diversity of applications was not expected when the first triarylborane was reported in 1885. Synthetic approaches to triarylboranes underwent various changes over the following century, some of which are still used in the present day, such as the generally applicable routes developed by Krause et al. in 1922, or by Grisdale et al. in 1972 at Eastman Kodak. Some other developments were not pursued further after their initial reports, such as the synthesis of two triarylboranes bearing three different aromatic groups by Mikhailov et al. in 1958. This review summarizes the development of synthetic approaches to triarylboranes from their first report nearly 135 years ago to the present.}, language = {en} } @article{BanGriesbeckTomićetal.2020, author = {Ban, Željka and Griesbeck, Stefanie and Tomić, Sanja and Nitsch, J{\"o}rn and Marder, Todd B. and Piantanida, Ivo}, title = {A Quadrupolar Bis-Triarylborane Chromophore as a Fluorimetric and Chirooptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins}, series = {Chemistry - A European Journal}, volume = {26}, journal = {Chemistry - A European Journal}, number = {10}, doi = {10.1002/chem.201903936}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-208154}, pages = {2195-2203}, year = {2020}, abstract = {A water-soluble tetracationic quadrupolar bis-triarylborane chromophore showed strong binding to ds-DNA, ds-RNA, ss-RNA, as well as to the naturally most abundant protein, BSA. The novel dye can distinguish between DNA/RNA and BSA by fluorescence emission separated by Δv =3600 cm\(^{-1}\), allowing for the simultaneous quantification of DNA/RNA and protein (BSA) in a mixture. The applicability of such fluorimetric differentiation in vitro was demonstrated, strongly supporting a protein-like target as a dominant binding site of 1 in cells. Moreover, our dye also bound strongly to ss-RNA, with the unusual rod-like structure of the dye, decorated by four positive charges at its termini and having a hydrophobic core, acting as a spindle for wrapping A, C and U ss-RNAs, but not poly G, the latter preserving its secondary structure. To the best of our knowledge, such unmatched, multifaceted binding activity of a small molecule toward DNA, RNA, and proteins and the selectivity of its fluorimetric and chirooptic response makes the quadrupolar bis-triarylborane a novel chromophore/fluorophore moiety for biochemical applications.}, language = {en} }