@article{SchmalzlPlumhoffGilbertetal.2019, author = {Schmalzl, Jonas and Plumhoff, Piet and Gilbert, Fabian and Gohlke, Frank and Konrads, Christian and Brunner, Ulrich and Jakob, Franz and Ebert, Regina and Steinert, Andre F.}, title = {Tendon-derived stem cells from the long head of the biceps tendon}, series = {Bone \& Joint Research}, volume = {8}, journal = {Bone \& Joint Research}, number = {9}, doi = {10.1302/2046-3758.89.BJR-2018-0214.R2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-200370}, pages = {414-424}, year = {2019}, abstract = {Objectives The long head of the biceps (LHB) is often resected in shoulder surgery and could therefore serve as a cell source for tissue engineering approaches in the shoulder. However, whether it represents a suitable cell source for regenerative approaches, both in the inflamed and non-inflamed states, remains unclear. In the present study, inflamed and native human LHBs were comparatively characterized for features of regeneration. Methods In total, 22 resected LHB tendons were classified into inflamed samples (n = 11) and non-inflamed samples (n = 11). Proliferation potential and specific marker gene expression of primary LHB-derived cell cultures were analyzed. Multipotentiality, including osteogenic, adipogenic, chondrogenic, and tenogenic differentiation potential of both groups were compared under respective lineage-specific culture conditions. Results Inflammation does not seem to affect the proliferation rate of the isolated tendon-derived stem cells (TDSCs) and the tenogenic marker gene expression. Cells from both groups showed an equivalent osteogenic, adipogenic, chondrogenic and tenogenic differentiation potential in histology and real-time polymerase chain reaction (RT-PCR) analysis. Conclusion These results suggest that the LHB tendon might be a suitable cell source for regenerative approaches, both in inflamed and non-inflamed states. The LHB with and without tendinitis has been characterized as a novel source of TDSCs, which might facilitate treatment of degeneration and induction of regeneration in shoulder surgery.}, language = {en} } @phdthesis{Rackwitz2007, author = {Rackwitz, Lars}, title = {In-vitro-Untersuchungen zur chondrogenen Differenzierung von humanen mesenchymalen Stammzellen in einem Kollagen I Hydrogel f{\"u}r den Gelenkknorpelersatz}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-22547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {No abstract available}, language = {de} } @phdthesis{Heitmann2014, author = {Heitmann, Maximilian}, title = {Vergleich der genetischen Eigenschaften von Bone Marrow derived Mesenchymal Stem Cells und Trabecular Bone derived Mesenchymal Stem Cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-108612}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {Technische Neuerungen und steigende Anspr{\"u}che an die Gesundheit stellen die moderne Medizin immer wieder vor neue Herausforderungen und f{\"u}hren zur Entwicklung von neuen Therapiekonzepten wie dem Tissue Engineering. Vielfach kommen dabei adulte pluripotente Stammzellen zum Einsatz. Bei der Regeneration mesenchymalen Gewebes wie Knochen, Knorpel und Muskulatur leisten Mesenchymale Stammzellen (MSCs) einen entscheidenden Beitrag. Diese lassen sich aus allen mesenchymalen Geweben des K{\"o}rpers gewinnen und stellen daher zwar keine homogene Zellpopulation dar, doch sie lassen sich aufgrund ph{\"a}notypischer und molekularbiologischer Gemeinsamkeiten charakterisieren. In großer Zahl lassen sich MSCs aus dem Knochenmark gewinnen und werden als stromale MSCs bzw. mhMSCs (marrow-derived human MSCs) bezeichnet. Auf der Suche nach homogenen Subpopulationen von MSCs wurde in dieser Arbeit eine Zellpopulation aus Knochentrabekeln gewonnen, sogenannte bhMSCs (trabecular bone-derived MSCs), und anhand ihrer Genexpression mit mhMSCs verglichen. Daf{\"u}r wurde RNA aus beiden Populationen in einem Microarray mit anschließender SAM (significance analysis of microarrays) analysiert um unterschiedliche Expressionsmuster zwischen mhMSCs und bhMSCs aufzuzeigen. Diese Ergebnisse wurden durch konventionelle Reverse Transkriptase Polymerase Kettenreaktion (RT-PCR) best{\"a}tigt, wobei das Augenmerk vor allem auf solche Gene gerichtet wurde, die differentiell exprimiert waren und zudem als Markergene ein Differenzierungspotential in bestimmte Gewebe wie Muskel und Knochen vorhersagen. Dabei konnte sowohl eine gute {\"U}bereinstimmung zwischen Microarray und RT-PCR demonstriert als auch die Hoffnung auf eine homogene (trabekul{\"a}re) MSC-Population mit anderen Differenzierungseigenschaften geweckt werden. Im Verlauf weitergehender Untersuchungen der SAM fiel eine unerkl{\"a}rlich hohe Expression von Immunglobulinketten in der mhMSC-Kultur (Passage 0) auf, die letztlich auf eine Kontamination der Zellkultur mit Plasmazellen schließen ließ. Da die Ergebnisse des Microarrays (Passage 0 Kultur) somit zu hinterfragen waren, wurde die Kontamination der Plasmazellen durch Passagieren der mhMSC-Zellkultur (Passage 1) beseitigt und erneut ein Microarray mit SAM durchgef{\"u}hrt. Dabei relativierten sich fast alle Expressionsunterschiede, die somit auf die Kontamination der Plasmazellen zur{\"u}ckgef{\"u}hrt werden mussten. Einzig drei Gene (CD24, TRIB2, AHNAK) wurden in diesem zweiten Array differentiell exprimiert, was sich bei CD24 und TRIB2 auch durch RT-PCR untermauern ließ. Es l{\"a}sst sich also schlussfolgern, dass bhMSCs wahrscheinlich in der Zukunft des Tissue Engineering keinen Stellenwert haben werden, zumal ihre Gewinnung im Vergleich zu mhMSC deutlich aufwendiger ist.}, subject = {Mesenchymale Stammzelle}, language = {de} } @phdthesis{Arnholdt2010, author = {Arnholdt, J{\"o}rg}, title = {Vergleichende Genexpressions-Analyse unterschiedlicher Populationen mesenchymaler Stammzellen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-53512}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {Neben den omnipotenten embryonalen Stammzellen existieren im menschlichen K{\"o}rper adulte mesenchymale Stammzellen (MSZ). Diese Zellen sind in mesenchymalen Geweben {\"u}ber den gesamten Organismus verteilt und sorgen f{\"u}r die Entwicklung und Erneuerung von mesenchymalen Geweben wie Knochen, Knorpel und B{\"a}ndern. Daher gelten die MSZ im Gegensatz zu den omnipotenten embryonalen Stammzellen als multipotent. Diese verschiedenen MSZ stellen keine homogene Population dar, zeigen aber sowohl in vivo und auch in vitro ein {\"a}hnliches Differenzierungsverhalten. In der vorliegenden Arbeit wurde nun eine aus den Knochentrabekeln selbst isolierte MSZ-Population, so genannte bhMSZ, mit MSZ aus dem Knochenmark, mhMSZ genannt, mittels Array-Analyse miteinander verglichen. Die technische Evaluation des Array respektive der zugeh{\"o}rigen SAM-Analyse (significance analysis of microarrays) mittels konventioneller oder Real-Time PCR diente dazu, die Verl{\"a}sslichkeit der Aussage der Hybridisierungsverfahren zu {\"u}berpr{\"u}fen. Dies wurde mit einem Set an ausgew{\"a}hlten Genen durchgef{\"u}hrt, die signifikant differentiell exprimiert waren, und die im Rahmen der Stammzellbiologie relevant erschienen. Die Analyse zeigte, dass die {\"U}bereinstimmung der Aussage im Array in {\"u}ber 80 \% mit den Ergebnissen der RT-PCR kongruent war. Auf Grund starker interindividueller Schwankungen zeigte sich aber auch, dass die Anzahl der Spender 5 nicht unterschreiten sollte. Im Rahmen der Untersuchungen ergab sich, dass offenbar bei MSZ der Passage 0 eine Kontamination der MSZ mit Plasmazellen vorliegt. Weitere Versuche zeigten, dass erst das Passagieren der MSZ kontaminierende Plasmazellen weitgehend aus der Zellkultur entfernte. Aus diesem Grund wurde in einer weiteren Array Analyse das Transkriptom von MSZ aus Knochentrabekeln mit MSZ aus dem Knochenmark in Passage 1 verglichen. Es zeigten sich in einer stringenten SAM-Analyse keine Unterschiede im Transkriptom. F{\"u}r klinische Anwendungen scheinen die bhMSZ daher auf Grund der aufwendigeren Isolierung und des dennoch eher geringen Zellgewinns nicht im gleichen Maß f{\"u}r klinische Anwendungen geeignet wie mhMSZ.}, subject = {Adulte Stammzelle}, language = {de} } @article{ArmbrusterKriegWeissenbergeretal.2017, author = {Armbruster, Nicole and Krieg, Jennifer and Weißenberger, Manuel and Scheller, Carsten and Steinert, Andre F.}, title = {Rescued Chondrogenesis of Mesenchymal Stem Cells under Interleukin 1 Challenge by Foamyviral Interleukin 1 Receptor Antagonist Gene Transfer}, series = {Frontiers in Pharmacology}, volume = {8}, journal = {Frontiers in Pharmacology}, number = {255}, doi = {10.3389/fphar.2017.00255}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170919}, year = {2017}, abstract = {Background: Mesenchymal stem cells (MSCs) and their chondrogenic differentiation have been extensively investigated in vitro as MSCs provide an attractive source besides chondrocytes for cartilage repair therapies. Here we established prototype foamyviral vectors (FVV) that are derived from apathogenic parent viruses and are characterized by a broad host range and a favorable integration pattern into the cellular genome. As the inflammatory cytokine interleukin 1 beta (IL1β) is frequently present in diseased joints, the protective effects of FVV expressing the human interleukin 1 receptor antagonist protein (IL1RA) were studied in an established in vitro model (aggregate culture system) of chondrogenesis in the presence of IL1β. Materials and Methods: We generated different recombinant FVVs encoding enhanced green fluorescent protein (EGFP) or IL1RA and examined their transduction efficiencies and transgene expression profiles using different cell lines and human primary MSCs derived from bone marrow-aspirates. Transgene expression was evaluated by fluorescence microscopy (EGFP), flow cytometry (EGFP), and ELISA (IL1RA). For evaluation of the functionality of the IL1RA transgene to block the inhibitory effects of IL1β on chondrogenesis of primary MSCs and an immortalized MSC cell line (TERT4 cells), the cells were maintained following transduction as aggregate cultures in standard chondrogenic media in the presence or absence of IL1β. After 3 weeks of culture, pellets were harvested and analyzed by histology and immunohistochemistry for chondrogenic phenotypes. Results: The different FVV efficiently transduced cell lines as well as primary MSCs, thereby reaching high transgene expression levels in 6-well plates with levels of around 100 ng/ml IL1RA. MSC aggregate cultures which were maintained in chondrogenic media without IL1β supplementation revealed a chondrogenic phenotype by means of strong positive staining for collagen type II and matrix proteoglycan (Alcian blue). Addition of IL1β was inhibitory to chondrogenesis in untreated control pellets. In contrast, foamyviral mediated IL1RA expression rescued the chondrogenesis in pellets cultured in the presence of IL1β. Transduced MSC pellets reached thereby very high IL1RA transgene expression levels with a peak of 1087 ng/ml after day 7, followed by a decrease to 194 ng/ml after day 21, while IL1RA concentrations of controls were permanently below 200 pg/ml. Conclusion: Our results indicate that FVV are capable of efficient gene transfer to MSCs, while reaching IL1RA transgene expression levels, that were able to efficiently block the impacts of IL1β in vitro. FVV merit further investigation as a means to study the potential as a gene transfer tool for MSC based therapies for cartilage repair.}, language = {en} }