@phdthesis{Lang2009, author = {Lang, Stefan}, title = {Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-37652}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter {\"u}ber einen Verzweigungspunkt Y-f{\"o}rmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazit{\"a}ten als auch die Quantenkapazit{\"a}ten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazit{\"a}ten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazit{\"a}ten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. F{\"u}r X-f{\"o}rmige Verzweigungen wird gezeigt, dass f{\"u}r ausgew{\"a}hlte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zur{\"u}ckgef{\"u}hrt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilit{\"a}tsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazit{\"a}t aufweisen. Außerdem konnte in gr{\"o}ßeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer {\"u}bereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen w{\"a}hrend des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven {\"A}tzprozess anwenden zu k{\"o}nnen. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles {\"A}tzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate f{\"u}r das andere 2DEG dienen kann, wobei f{\"u}r die untersuchten Strukturen eine Gateeffektivit{\"a}t nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken ge{\"a}tzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszust{\"a}nden des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit f{\"u}r stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abh{\"a}ngen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfl{\"a}che liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs {\"u}ber ein Metallgate definiert. Andererseits wurde auf der gegen{\"u}berliegenden Seite eine Potentialbarriere durch den {\"A}tzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der ge{\"a}tzten Grenzfl{\"a}che zur{\"u}ckzuf{\"u}hren sind. F{\"u}r hohe Vorw{\"a}rtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivit{\"a}t von 3.4mVT zu verwenden. Als Ausblick f{\"u}r die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential f{\"u}r zuk{\"u}nftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel f{\"u}r die Zukunft sein, Neuron {\"a}hnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren.}, subject = {Quantendraht}, language = {de} }