@phdthesis{Niemann2013, author = {Niemann, Sylvia}, title = {Seed Coat Permeability of Active Ingredients}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-79585}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {The seed coat is the barrier controlling exchange of solutes between the plant embryo and its environment. This exchange is of importance for example in the uptake of germination inhibitors or in the uptake of agrochemicals applied as seed treatment. A thorough understanding of the basic mechanisms underlying solute permeation across the seed coat would help to improve the effectiveness of seed treatment formulations. In seed treatment formulations, additives can be used to enhance or decrease mobility or uptake of the active ingredient (AI). In the present study the seed coat barrier properties and the seed coat permeation process was examined with the model species Pisum sativum and with a set of model solutes. The lipophilic fraction of the seed coat was analysed by gas chromatography and mass spectrometry and it was found that the total lipophilic compartment of the seed coat represents 0.61 \% of the weight of a swollen seed coat. The seed is covered by a lipophilic cuticle. The seed coat coverage with cuticular waxes is ten to 18-fold lower than wax coverage of pea leaves, though. In order to examine sorption of solutes in the small lipophilic compartment of the seed coat, seed coat/water partition coefficients were determined. These cover a much smaller range than the corresponding n-octanol/water partition coefficients. The lipophilic sorption compartment as calculated from the seed coat/water partition coefficient data is smaller than the analysed total lipophilic compartment of the seed coat since not all of the lipid components can act as sorption compartment. During seed swelling, the pea seed nearly doubles its weight. The uptake of water is driven by the very low water potential of the dry seed and controlled by the seed coat hydraulic conductivity both of which increase during seed swelling. Depending on the available form of water, water uptake can take place by diffusion from air humidity or by mass flow from liquid water. Water uptake by a seed in moist sand takes place by a combination of both uptake mechanisms. The basic transport mechanism underlying solute permeation of seed coats was analysed by steady-state experiments with a newly devised experimental setup. The permeance P for permeation of the set of model compounds across isolated seed coat halves ranged from 3.34 x 10-8 m s-1 for abamectin to 18.9 x 10-8 m s-1 for caffeine. It was found that solute permeation across the seed coat takes aqueous pathways. This was concluded from the facts that molar volume instead of lipophilicity of the solutes determine permeation and that the temperature effect on permeation is very small. This is in contrast to typical leaf and fruit cuticular uptake where lipophilic pathways dominate. Solute uptake across the seed coat can take place by two different mechanisms both of which take aqueous pathways. Uptake can be by diffusion and in the presence of a bulk flow of water driven by a water potential difference also by solvent drag. The presence of the solvent drag uptake mechanism shows that the aqueous pathways form an aqueous continuum across the seed coat. These findings indicate that the seed coat covering cuticle does not form a continuous barrier enclosing the seed. In order to examine solute uptake across the seed coat under conditions close to a situation taking place in the field, the process of uptake of a seed treatment AI in the field was simulated. In the situation of a treated seed in the field, the seed treatment residue dissolves and then the AI can move either into the surrounding soil or across the seed coat into the seed. Uptake across the seed coat can take place either by diffusion or during seed swelling by the solvent drag mechanism. Since the seed treatment residue depletes over time, non-steady-state uptake takes place. To simulate these processes, laboratory scale seed treatment methods were established to produce treated seeds and isolated treated seed coat halves. Experimental setups for non-steady-state uptake experiments were established with whole treated seeds and with isolated treated seed coat halves as simplified screening tool. By modelling of the AI uptake as a first-order process the rate constant k and the final relative uptake amount Mt→∞ M0-1 were obtained. With k and Mt→∞ M0-1 a quantification and comparison of the uptake curves was possible. Both in the experiments with whole treated seeds and with isolated treated seed coats, uptake of metalaxyl-M was much faster than uptake of sedaxane. In the uptake of a seed treatment AI, not only the solute's molar volume but also its water solubility determine uptake. The solute's water solubility is important for dissolution of the AI from the seed treatment residue and thus determines availability of the AI for uptake. Water solubility also controls the possible concentration in solution and thus the driving force for diffusive uptake. Furthermore, the AI amount taken up by solvent drag is determined by concentration in the inflowing water and thus by water solubility. In the experiments with whole treated seeds the additive effects on uptake were smaller than in the experiments with isolated treated seed coats or not significant. Adigor functions as an emulsifier and can lead to a slight increase of AI mobilisation from the seed treatment residue. NeoCryl A-2099 can cause a slowed down release of the AI from the seed treatment residue. The effects of both additives were smaller than the effect caused by different AI physico-chemical properties. Therefore, the most important factor determining uptake of a seed treatment AI are the AI's physico-chemical properties, especially its water solubility.}, subject = {Samenschale}, language = {en} }