@phdthesis{Kamke2013, author = {Kamke, Janine}, title = {Single-cell genomics of the candidate phylum Poribacteria}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-85042}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2013}, abstract = {Marine sponges are the most ancient metazoans and of large ecological importance as drivers of water and nutrient flows in benthic habitats. Furthermore marine sponges are well known for their association with highly abundant and diverse microbial consortia. Microorganisms inhabit the extracellular matrix of marine sponges where they can make up to 35\% of the sponge's biomass. Many microbial symbionts of marine sponges are highly host specific and cannot, or only in very rare abundances, be found outside of their host environment. Of special interest is the candidate phylum Poribacteria that was first discovered in marine sponges and still remains almost exclusive to their hosts. Phylogenetically Poribacteria were placed into the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum and similarly to many members of this superphylum cell compartmentation has been proposed to occur in members of the Poribacteria. The status as a candidate phylum implies that no member of Poribacteria has been obtained in culture yet. This restricts the investigations of Poribacteria and their interactions with marine sponges to culture independent methods and makes functional characterisation a difficult task. In this PhD thesis I used the novel method of single-cell genomics to investigate the genomic potential of the candidate phylum Poribacteria. Single-cell genomics enables whole genome sequencing of uncultivated microorganisms by singularising cells from the environment, subsequent cell lysis and multiple displacement amplification of the total genomic DNA. This process yields sufficient amounts of DNA for whole genome sequencing and genome analysis. This technique and its relevance for symbiosis studies are discussed in this PhD thesis. Through the application of single-cell genomics it was possible to increase the number of single-amplified genomes of the candidate phylum Poribacteria from initially one to a total of six. Analyses of these datasets made it possible to enhance our understanding of the metabolism, taxonomy, and phylum diversity of Poribacteria and thus made these one of the best-characterised sponge symbionts today. The poribacterial genomes represented three phylotypes within the candidate phylum of which one appeared dominant. Phylogenetic and phylogenomic analyses revealed a novel phylogenetic positioning of Poribacteria distinctly outside of the Planctomycete, Verrucomicorbia, Chlamydiae superphylum. The occurrence of cell compartmentation in Poribacteria was also revisited based on the obtained genome sequences and revealed evidence for bacterial microcompartments instead of the previously suggested nucleotide-like structures. An extensive genomic repertoire of glycoside hydrolases, glycotransferases, and other carbohydrate active enzymes was found to be the central shared feature between all poribacterial genomes and showed that Poribacteria are among those marine bacteria with the largest genomic repertoire for carbohydrate degradation. Detailed analysis of the carbohydrate metabolism revealed that Poribacteria have the genomic potential for degradation of a variety of polymers, di- and monosaccharaides that allow these symbionts to feed various nutrient sources accessible through the filter-feeding activities of the sponge host. Furthermore the poribacterial glycobiome appeared to enable degradation of glycosaminoglycan chains, one of the main building blocks of extracellular matrix of marine sponges. Different lifestyles resulting from the poribacterial carbohydrate degradation potential are discussed including the influence of nutrient cycling in sponges, nutrient recycling and scavenging. The findings of this thesis emphasise the long overlooked importance of heterotrophic symbionts such as Poribacteria for the interactions with marine sponges and represent a solid basis for future studies of the influence heterotrophic symbionts have on their sponge hosts.}, subject = {Bakterien}, language = {en} }