@article{ChenReiherHermannLuibletal.2016, author = {Chen, Jiangtian and Reiher, Wencke and Hermann-Luibl, Christiane and Sellami, Azza and Cognigni, Paola and Kondo, Shu and Helfrich-F{\"o}rster, Charlotte and Veenstra, Jan A. and Wegener, Christian}, title = {Allatostatin A Signalling in Drosophila Regulates Feeding and Sleep and Is Modulated by PDF}, series = {PLoS Genetics}, volume = {12}, journal = {PLoS Genetics}, number = {9}, doi = {10.1371/journal.pgen.1006346}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-178170}, year = {2016}, abstract = {Feeding and sleep are fundamental behaviours with significant interconnections and cross-modulations. The circadian system and peptidergic signals are important components of this modulation, but still little is known about the mechanisms and networks by which they interact to regulate feeding and sleep. We show that specific thermogenetic activation of peptidergic Allatostatin A (AstA)-expressing PLP neurons and enteroendocrine cells reduces feeding and promotes sleep in the fruit fly Drosophila. The effects of AstA cell activation are mediated by AstA peptides with receptors homolog to galanin receptors subserving similar and apparently conserved functions in vertebrates. We further identify the PLP neurons as a downstream target of the neuropeptide pigment-dispersing factor (PDF), an output factor of the circadian clock. PLP neurons are contacted by PDF-expressing clock neurons, and express a functional PDF receptor demonstrated by cAMP imaging. Silencing of AstA signalling and continuous input to AstA cells by tethered PDF changes the sleep/activity ratio in opposite directions but does not affect rhythmicity. Taken together, our results suggest that pleiotropic AstA signalling by a distinct neuronal and enteroendocrine AstA cell subset adapts the fly to a digestive energy-saving state which can be modulated by PDF.}, language = {en} } @article{WegenerChen2022, author = {Wegener, Christian and Chen, Jiangtian}, title = {Allatostatin A signalling: progress and new challenges from a paradigmatic pleiotropic invertebrate neuropeptide family}, series = {Frontiers in Physiology}, volume = {13}, journal = {Frontiers in Physiology}, issn = {1664-042X}, doi = {10.3389/fphys.2022.920529}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-278749}, year = {2022}, abstract = {Neuropeptides have gained broad attraction in insect neuroscience and physiology, as new genetic tools are increasingly uncovering their wide-ranging pleiotropic functions with high cellular resolution. Allatostatin A (AstA) peptides constitute one of the best studied insect neuropeptide families. In insects and other panarthropods, AstA peptides qualify as brain-gut peptides and have regained attention with the discovery of their role in regulating feeding, growth, activity/sleep and learning. AstA receptor homologs are found throughout the protostomia and group with vertebrate somatostatin/galanin/kisspeptin receptors. In this review, we summarise the current knowledge on the evolution and the pleiotropic and cell-specific non-allatostatic functions of AstA. We speculate about the core functions of AstA signalling, and derive open questions and challengesfor future research on AstA and invertebrate neuropeptides in general.}, language = {en} } @article{SelchoMillanPalaciosMunozetal.2017, author = {Selcho, Mareike and Mill{\´a}n, Carola and Palacios-Mu{\~n}oz, Angelina and Ruf, Franziska and Ubillo, Lilian and Chen, Jiangtian and Bergmann, Gregor and Ito, Chihiro and Silva, Valeria and Wegener, Christian and Ewer, John}, title = {Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, number = {15563}, doi = {10.1038/ncomms15563}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-170831}, year = {2017}, abstract = {Animal circadian clocks consist of central and peripheral pacemakers, which are coordinated to produce daily rhythms in physiology and behaviour. Despite its importance for optimal performance and health, the mechanism of clock coordination is poorly understood. Here we dissect the pathway through which the circadian clock of Drosophila imposes daily rhythmicity to the pattern of adult emergence. Rhythmicity depends on the coupling between the brain clock and a peripheral clock in the prothoracic gland (PG), which produces the steroid hormone, ecdysone. Time information from the central clock is transmitted via the neuropeptide, sNPF, to non-clock neurons that produce the neuropeptide, PTTH. These secretory neurons then forward time information to the PG clock. We also show that the central clock exerts a dominant role on the peripheral clock. This use of two coupled clocks could serve as a paradigm to understand how daily steroid hormone rhythms are generated in animals.}, language = {en} } @article{WegenerKarsaiPollaketal.2013, author = {Wegener, Christian and Karsai, Gergely and Poll{\´a}k, Edit and Wacker, Matthias and V{\"o}mel, Matthias and Selcho, Mareike and Berta, Gergely and Nachman, Ronald J. and Isaac, R. Elwyn and Moln{\´a}r, L{\´a}szl{\´o}}, title = {Diverse in- and output polarities and high complexity of local synaptic and non-synaptic signaling within a chemically defined class of peptidergic Drosophila neurons}, series = {Frontiers in Neural Circuits}, journal = {Frontiers in Neural Circuits}, doi = {10.3389/fncir.2013.00127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-96914}, year = {2013}, abstract = {Peptidergic neurons are not easily integrated into current connectomics concepts, since their peptide messages can be distributed via non-synaptic paracrine signaling or volume transmission. Moreover, the polarity of peptidergic interneurons in terms of in- and out-put sites can be hard to predict and is very little explored. We describe in detail the morphology and the subcellular distribution of fluorescent vesicle/dendrite markers in CCAP neurons (NCCAP), a well defined set of peptidergic neurons in the Drosophila larva. NCCAP can be divided into five morphologically distinct subsets. In contrast to other subsets, serial homologous interneurons in the ventral ganglion show a mixed localization of in- and output markers along ventral neurites that defy a classification as dendritic or axonal compartments. Ultrastructurally, these neurites contain both pre- and postsynaptic sites preferably at varicosities. A significant portion of the synaptic events are due to reciprocal synapses. Peptides are mostly non-synaptically or parasynaptically released, and dense-core vesicles and synaptic vesicle pools are typically well separated. The responsiveness of the NCCAP to ecdysis-triggering hormone may be at least partly dependent on a tonic synaptic inhibition, and is independent of ecdysteroids. Our results reveal a remarkable variety and complexity of local synaptic circuitry within a chemically defined set of peptidergic neurons. Synaptic transmitter signaling as well as peptidergic paracrine signaling and volume transmission from varicosities can be main signaling modes of peptidergic interneurons depending on the subcellular region. The possibility of region-specific variable signaling modes should be taken into account in connectomic studies that aim to dissect the circuitry underlying insect behavior and physiology, in which peptidergic neurons act as important regulators.}, language = {en} } @article{PaulsHamaratTrufasuetal.2019, author = {Pauls, Dennis and Hamarat, Yasmin and Trufasu, Luisa and Schendzielorz, Tim M. and Gramlich, Gertrud and Kahnt, J{\"o}rg and Vanselow, Jens and Schlosser, Andreas and Wegener, Christian}, title = {Drosophila carboxypeptidase D (SILVER) is a key enzyme in neuropeptide processing required to maintain locomotor activity levels and survival rate}, series = {European Journal of Neuroscience}, volume = {50}, journal = {European Journal of Neuroscience}, number = {9}, doi = {10.1111/ejn.14516}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-204863}, pages = {3502-3519}, year = {2019}, abstract = {Neuropeptides are processed from larger preproproteins by a dedicated set of enzymes. The molecular and biochemical mechanisms underlying preproprotein processing and the functional importance of processing enzymes are well-characterised in mammals, but little studied outside this group. In contrast to mammals, Drosophila melanogaster lacks a gene for carboxypeptidase E (CPE ), a key enzyme for mammalian peptide processing. By combining peptidomics and neurogenetics, we addressed the role of carboxypeptidase D (dCPD ) in global neuropeptide processing and selected peptide-regulated behaviours in Drosophila . We found that a deficiency in dCPD results in C-terminally extended peptides across the peptidome, suggesting that dCPD took over CPE function in the fruit fly. dCPD is widely expressed throughout the nervous system, including peptidergic neurons in the mushroom body and neuroendocrine cells expressing adipokinetic hormone. Conditional hypomorphic mutation in the dCPD -encoding gene silver in the larva causes lethality, and leads to deficits in starvation-induced hyperactivity and appetitive gustatory preference, as well as to reduced viability and activity levels in adults. A phylogenomic analysis suggests that loss of CPE is not common to insects, but only occurred in Hymenoptera and Diptera. Our results show that dCPD is a key enzyme for neuropeptide processing and peptide-regulated behaviour in Drosophila . dCPD thus appears as a suitable target to genetically shut down total neuropeptide production in peptidergic neurons. The persistent occurrence of CPD in insect genomes may point to important further CPD functions beyond neuropeptide processing which cannot be fulfilled by CPE.}, language = {en} } @article{BuchnerBlancoRedondoBunzetal.2013, author = {Buchner, Erich and Blanco Redondo, Beatriz and Bunz, Melanie and Halder, Partho and Sadanandappa, Madhumala K. and M{\"u}hlbauer, Barbara and Erwin, Felix and Hofbauer, Alois and Rodrigues, Veronica and VijayRaghavan, K. and Ramaswami, Mani and Rieger, Dirk and Wegener, Christian and F{\"o}rster, Charlotte}, title = {Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the W{\"u}rzburg Hybridoma Library}, series = {PLoS ONE}, journal = {PLoS ONE}, doi = {10.1371/journal.pone.0075420}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-97109}, year = {2013}, abstract = {Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the W{\"u}rzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the W{\"u}rzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed.}, language = {en} } @article{SchaeblerAmatobiHornetal.2020, author = {Sch{\"a}bler, Stefan and Amatobi, Kelechi M. and Horn, Melanie and Rieger, Dirk and Helfrich‑F{\"o}rster, Charlotte and Mueller, Martin J. and Wegener, Christian and Fekete, Agnes}, title = {Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation}, series = {Cellular and Molecular Life Sciences}, volume = {77}, journal = {Cellular and Molecular Life Sciences}, issn = {1420-682X}, doi = {10.1007/s00018-019-03441-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-232432}, pages = {4939-4956}, year = {2020}, abstract = {The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC-MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants}, language = {en} } @article{ZoephelReiherRexeretal.2012, author = {Zoephel, Judith and Reiher, Wencke and Rexer, Karl-Heinz and Kahnt, J{\"o}rg and Wegener, Christian}, title = {Peptidomics of the Agriculturally Damaging Larval Stage of the Cabbage Root Fly Delia radicum (Diptera: Anthomyiidae)}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {7}, doi = {10.1371/journal.pone.0041543}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131727}, pages = {e41543}, year = {2012}, abstract = {The larvae of the cabbage root fly induce serious damage to cultivated crops of the family Brassicaceae. We here report the biochemical characterisation of neuropeptides from the central nervous system and neurohemal organs, as well as regulatory peptides from enteroendocrine midgut cells of the cabbage maggot. By LC-MALDI-TOF/TOF and chemical labelling with 4-sulfophenyl isothiocyanate, 38 peptides could be identified, representing major insect peptide families: allatostatin A, allatostatin C, FMRFamide-like peptides, kinin, CAPA peptides, pyrokinins, sNPF, myosuppressin, corazonin, SIFamide, sulfakinins, tachykinins, NPLP1-peptides, adipokinetic hormone and CCHamide 1. We also report a new peptide (Yamide) which appears to be homolog to an amidated eclosion hormone-associated peptide in several Drosophila species. Immunocytochemical characterisation of the distribution of several classes of peptide-immunoreactive neurons and enteroendocrine cells shows a very similar but not identical peptide distribution to Drosophila. Since peptides regulate many vital physiological and behavioural processes such as moulting or feeding, our data may initiate the pharmacological testing and development of new specific peptide-based protection methods against the cabbage root fly and its larva.}, language = {en} } @article{LyutovaSelchoPfeufferetal.2019, author = {Lyutova, Radostina and Selcho, Mareike and Pfeuffer, Maximilian and Segebarth, Dennis and Habenstein, Jens and Rohwedder, Astrid and Frantzmann, Felix and Wegener, Christian and Thum, Andreas S. and Pauls, Dennis}, title = {Reward signaling in a recurrent circuit of dopaminergic neurons and peptidergic Kenyon cells}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, doi = {10.1038/s41467-019-11092-1}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202161}, pages = {3097}, year = {2019}, abstract = {Dopaminergic neurons in the brain of the Drosophila larva play a key role in mediating reward information to the mushroom bodies during appetitive olfactory learning and memory. Using optogenetic activation of Kenyon cells we provide evidence that recurrent signaling exists between Kenyon cells and dopaminergic neurons of the primary protocerebral anterior (pPAM) cluster. Optogenetic activation of Kenyon cells paired with odor stimulation is sufficient to induce appetitive memory. Simultaneous impairment of the dopaminergic pPAM neurons abolishes appetitive memory expression. Thus, we argue that dopaminergic pPAM neurons mediate reward information to the Kenyon cells, and in turn receive feedback from Kenyon cells. We further show that this feedback signaling is dependent on short neuropeptide F, but not on acetylcholine known to be important for odor-shock memories in adult flies. Our data suggest that recurrent signaling routes within the larval mushroom body circuitry may represent a mechanism subserving memory stabilization.}, language = {en} } @article{MenaDiegelmannWegeneretal.2016, author = {Mena, Wilson and Diegelmann, S{\"o}ren and Wegener, Christian and Ewer, John}, title = {Stereotyped responses of Drosophila peptidergic neuronal ensemble depend on downstream neuromodulators}, series = {eLife}, volume = {5}, journal = {eLife}, doi = {10.7554/eLife.19686}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-165003}, pages = {e19686}, year = {2016}, abstract = {Neuropeptides play a key role in the regulation of behaviors and physiological responses including alertness, social recognition, and hunger, yet, their mechanism of action is poorly understood. Here, we focus on the endocrine control ecdysis behavior, which is used by arthropods to shed their cuticle at the end of every molt. Ecdysis is triggered by ETH (Ecdysis triggering hormone), and we show that the response of peptidergic neurons that produce CCAP (crustacean cardioactive peptide), which are key targets of ETH and control the onset of ecdysis behavior, depends fundamentally on the actions of neuropeptides produced by other direct targets of ETH and released in a broad paracrine manner within the CNS; by autocrine influences from the CCAP neurons themselves; and by inhibitory actions mediated by GABA. Our findings provide insights into how this critical insect behavior is controlled and general principles for understanding how neuropeptides organize neuronal activity and behaviors.}, language = {en} }