@article{ChumakRuettigerLeeetal.2016, author = {Chumak, Tetyana and R{\"u}ttiger, Lukas and Lee, Sze Chim and Campanelli, Dario and Zuccotti, Annalisa and Singer, Wibke and Popel{\´a}ř, Jiř{\´i} and Gutsche, Katja and Geisler, Hyun-Soon and Schraven, Sebastian Philipp and Jaumann, Mirko and Panford-Walsh, Rama and Hu, Jing and Schimmang, Thomas and Zimmermann, Ulrike and Syka, Josef and Knipper, Marlies}, title = {BDNF in Lower Brain Parts Modifies Auditory Fiber Activity to Gain Fidelity but Increases the Risk for Generation of Central Noise After Injury}, series = {Molecular Neurobiology}, volume = {53}, journal = {Molecular Neurobiology}, number = {8}, doi = {10.1007/s12035-015-9474-x}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-187341}, pages = {5607-5627}, year = {2016}, abstract = {For all sensory organs, the establishment of spatial and temporal cortical resolution is assumed to be initiated by the first sensory experience and a BDNF-dependent increase in intracortical inhibition. To address the potential of cortical BDNF for sound processing, we used mice with a conditional deletion of BDNF in which Cre expression was under the control of the Pax2 or TrkC promoter. BDNF deletion profiles between these mice differ in the organ of Corti (BDNF \(^{Pax2}\) -KO) versus the auditory cortex and hippocampus (BDNF \(^{TrkC}\) -KO). We demonstrate that BDNF \(^{Pax2}\) -KO but not BDNF \(^{TrkC}\) -KO mice exhibit reduced sound-evoked suprathreshold ABR waves at the level of the auditory nerve (wave I) and inferior colliculus (IC) (wave IV), indicating that BDNF in lower brain regions but not in the auditory cortex improves sound sensitivity during hearing onset. Extracellular recording of IC neurons of BDNF \(^{Pax2}\) mutant mice revealed that the reduced sensitivity of auditory fibers in these mice went hand in hand with elevated thresholds, reduced dynamic range, prolonged latency, and increased inhibitory strength in IC neurons. Reduced parvalbumin-positive contacts were found in the ascending auditory circuit, including the auditory cortex and hippocampus of BDNF \(^{Pax2}\) -KO, but not of BDNF \(^{TrkC}\) -KO mice. Also, BDNF \(^{Pax2}\) -WT but not BDNF \(^{Pax2}\) -KO mice did lose basal inhibitory strength in IC neurons after acoustic trauma. These findings suggest that BDNF in the lower parts of the auditory system drives auditory fidelity along the entire ascending pathway up to the cortex by increasing inhibitory strength in behaviorally relevant frequency regions. Fidelity and inhibitory strength can be lost following auditory nerve injury leading to diminished sensory outcome and increased central noise.}, language = {en} } @phdthesis{Engert2022, author = {Engert, Jonas}, title = {Untersuchung neuronaler Stammzellen des Colliculus inferior der Ratte im zeitlichen Verlauf}, doi = {10.25972/OPUS-28264}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-282642}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Neural stem cells (NSCs) have been recently identified in the inferior colliculus (IC). These cells are of particular interest, as no casual therapeutic options for impaired neural structures exist. This research project aims to evaluate the neurogenic potential in the rat IC from early postnatal days until adulthood. The IC of rats from postnatal day 6 up to 48 was examined by neurosphere assays and histological sections. In free-floating IC cell cultures, neurospheres formed from animals from early postnatal to adulthood. The amount of generated neurospheres decreased in older ages and increased with the number of cell line passages. Cells in the neurospheres and the histological sections stained positively with NSC markers (Doublecortin, Sox-2, Musashi-1, Nestin, and Atoh1). Dissociated single cells from the neurospheres differentiated and were stained positively for the neural lineage markers β-III-tubulin, glial fibrillary acidic protein, and myelin basic protein. In addition, NSC markers (Doublecortin, Sox-2, CDK5R1, and Ascl-1) were investigated by qRT-PCR. In conclusion, a neurogenic potential in the rat IC was detected and evaluated from early postnatal days until adulthood. The identification of NSCs in the rat IC and their age-specific characteristics contribute to a better understanding of the development and the plasticity of the auditory pathway and might be activated for therapeutic use.}, subject = {Colliculus inferior}, language = {de} }