@phdthesis{Kehl2010, author = {Kehl, Christian}, title = {Magnetic soft mode behaviour investigated via Multi-Spin Flip Raman Spectroscopy on near surface Cd1-xMnxTe/Cd1-yMgyTe Quantum wells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-56088}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2010}, abstract = {In the context of the ongoing discussion about a carrier-induced ferromagnetic phase transition in diluted-magnetic II-VI semiconductors (DMS), theoretical studies on coherent dynamics of localized spins coupled with a two-dimensional hole gas (2DHG) in DMS quantum wells (QWs) were done by K.V. KAVOKIN. His key for studying the exchange interaction of the localized spin ensemble (e.g. Mn2+) with the 2DHG is the Larmor frequency of the localized Mn-ion spins and thus their Mn-g-factor. It was shown that the 2DHG affects a time evolution of the (Mn-) spin system in an in-plane magnetic field resulting in the reduction of its Larmor frequency (Mn-g-factor) under the influence of an oscillating effective field of holes. This is called magnetic soft mode (behaviour). The experimental access for demonstrating this Mn-g-factor reduction with increasing hole concentration is the method of Multi-Spin-Flip (SF) Raman scattering combined with the variation of the carrier concentration by photo-excitation with an additional light source (two-colour experiment). The main motivation for this thesis was the experimental confirmation of the theoretically predicted magnetic soft mode and the analysis of its dependence on the hole-concentration and external B-field, as well as its disappearance with increasing sample temperature. For that purpose, CdMnTe/CdMgTe QWs (Mn: 0.6\%, 1.0\%) positioned close to the sample surface (13-19nm) were investigated in an in-plane applied external magnetic field (up to 4.5T in Voigt-geometry) via a two-colour experiment i.e. using two light sources. This allows the spin excitation of Mn-ions by simultaneously tuning the hole-concentration towards the ferromagnetic phase transition by photo-generated carriers. Thus, one tuneable laser is responsible for resonant below-barrier excitation as a probe for Multi-SF Raman scattering. The other laser excites photo-generated carriers from above barrier (2.41eV) for tuning the hole concentration in the QW. Positioning the QW close to the sample surface causes a surface-induced p-doping of the QW (intrinsic hole concentration in the QW) and enables the active tuning of the hole concentration by photo-generated carriers due to different tunnelling behaviour of electrons and holes from the QW to the surface. The Mn-g-factor was decreased by quasi-continuously increasing the above-barrier illumination (and thus the hole concentration), while the below-barrier excitation (Multi-PR probe) was kept at a constant low power. This results in a Mn-g-factor reduction starting from its atomic value g=2.01 to lowest evaluated Mn-g-factor in this thesis g=1.77. This is a magnetic softening of 12\%. Apart from the general magnetic soft mode behaviour at low temperatures, one of the main experimental results in this thesis is the confirmation of the theoretical prediction that the magnetic soft mode behaviour in the external B-field does not only depend on the carrier concentration but also on the B-field strength itself. An additional aspect is the temperature dependence of the magnetic soft mode. The Mn-g-factor decrease is suppressed with increasing temperature almost reaching the atomic Mn-g-factor at 4.2K (g=1.99). This behaviour is due to the T-induced weakening of the transverse 2DHG spin susceptibility. The results of the investigations concerning the cap layer thickness impact on the QW carrier characteristics were investigated in the cap thickness range of 13nm to 19nm. The cap thickness configures on the one hand the intrinsic hole concentration of the QW ("2DHG offset") due to the surface-induced p-doping and sets the "starting point" for the Mn-g-factor reduction. On the other hand the cap thickness determines the probability of electron tunnelling to the surface and thus the efficiency of the hole tuning by light. The latter is the criterion for the range of Mn-g-factor reduction by light. This two dependences were pointed out by the photo-generated hole influence on the QW PL-spectra which results in tuning the exciton-trion ratio. In summary both mechanisms are of relevance for the hole tuning and thus for the magnetic soft-mode behaviour. The mechanism of tunnelling time prevails at small cap layer thicknesses while the surface-induced p-doping plays the major role for larger cap thicknesses (> 25nm). In conclusion, the presented method in this thesis is a sensitive tool to study the dynamics of the spin excitations and the paramagnetic susceptibility in the vicinity of the hole-induced ferromagnetic phase transition.}, subject = {Raman-Spektroskopie}, language = {en} }