@article{LiuKinoshitaAdolfietal.2019, author = {Liu, Ruiqi and Kinoshita, Masato and Adolfi, Mateus C. and Schartl, Manfred}, title = {Analysis of the role of the Mc4r system in development, growth, and puberty of medaka}, series = {Frontiers in Endocrinology}, volume = {10}, journal = {Frontiers in Endocrinology}, doi = {10.3389/fendo.2019.00213}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201472}, pages = {213}, year = {2019}, abstract = {In mammals the melanocortin 4 receptor (Mc4r) signaling system has been mainly associated with the regulation of appetite and energy homeostasis. In fish of the genus Xiphophorus (platyfish and swordtails) puberty onset is genetically determined by a single locus, which encodes the mc4r. Wild populations of Xiphophorus are polymorphic for early and late-maturing individuals. Copy number variation of different mc4r alleles is responsible for the difference in puberty onset. To answer whether this is a special adaptation of the Mc4r signaling system in the lineage of Xiphophorus or a more widely conserved mechanism in teleosts, we studied the role of Mc4r in reproductive biology of medaka (Oryzias latipes), a close relative to Xiphophorus and a well-established model to study gonadal development. To understand the potential role of Mc4r in medaka, we characterized the major features of the Mc4r signaling system (mc4r, mrap2, pomc, agrp1). In medaka, all these genes are expressed before hatching. In adults, they are mainly expressed in the brain. The transcript of the receptor accessory protein mrap2 co-localizes with mc4r in the hypothalamus in adult brains indicating a conserved function of modulating Mc4r signaling. Comparing growth and puberty between wild-type and mc4r knockout medaka revealed that absence of Mc4r does not change puberty timing but significantly delays hatching. Embryonic development of knockout animals is retarded compared to wild-types. In conclusion, the Mc4r system in medaka is involved in regulation of growth rather than puberty.}, language = {en} } @article{LiuFriedrichHemmenetal.2023, author = {Liu, Ruiqi and Friedrich, Mike and Hemmen, Katherina and Jansen, Kerstin and Adolfi, Mateus C. and Schartl, Manfred and Heinze, Katrin G.}, title = {Dimerization of melanocortin 4 receptor controls puberty onset and body size polymorphism}, series = {Frontiers in Endocrinology}, volume = {14}, journal = {Frontiers in Endocrinology}, issn = {1664-2392}, doi = {10.3389/fendo.2023.1267590}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354261}, year = {2023}, abstract = {Xiphophorus fish exhibit a clear phenotypic polymorphism in puberty onset and reproductive strategies of males. In X. nigrensis and X. multilineatus, puberty onset is genetically determined and linked to a melanocortin 4 receptor (Mc4r) polymorphism of wild-type and mutant alleles on the sex chromosomes. We hypothesized that Mc4r mutant alleles act on wild-type alleles by a dominant negative effect through receptor dimerization, leading to differential intracellular signaling and effector gene activation. Depending on signaling strength, the onset of puberty either occurs early or is delayed. Here, we show by F{\"o}rster Resonance Energy Transfer (FRET) that wild-type Xiphophorus Mc4r monomers can form homodimers, but also heterodimers with mutant receptors resulting in compromised signaling which explains the reduced Mc4r signaling in large males. Thus, hetero- vs. homo- dimerization seems to be the key molecular mechanism for the polymorphism in puberty onset and body size in male fish.}, language = {en} } @phdthesis{Liu2022, author = {Liu, Ruiqi}, title = {Dynamic regulation of the melanocortin 4 receptor system in body weight homeostasis and reproductive maturation in fish}, doi = {10.25972/OPUS-20653}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-206536}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {Puberty is an important period of life with physiological changes to enable animals to reproduce. Xiphophorus fish exhibit polymorphism in body size, puberty timing, and reproductive tactics. These phenotypical polymorphisms are controlled by the Puberty (P) locus. In X. nigrensis and X. multilineatus, the P locus encodes the melanocortin 4 receptor (Mc4r) with high genetic polymorphisms. Mc4r is a member of the melanocortin receptors, belonging to class A G-protein coupled receptors. The Mc4r signaling system consists of Mc4r, the agonist Pomc (precursor of various MSH and of ACTH), the antagonist Agrp and accessory protein Mrap2. In humans, MC4R has a role in energy homeostasis. MC4R and MRAP2 mutations are linked to human obesity but not to puberty. Mc4rs in X. nigrensis and X. multilineatus are present in three allele classes, A, B1 and B2, of which the X-linked A alleles express functional receptors and the male-specific Y-linked B alleles encode defective receptors. Male body sizes are correlated with B allele type and B allele copy numbers. Late-maturing large males carry B alleles in high copy number while early-maturing small males carry B alleles in low copy number or only A alleles. Cell culture co-expression experiments indicated that B alleles may act as dominant negative receptor mutants on A alleles. In this study, the main aim was to biochemically characterize the mechanism of puberty regulation by Mc4r in X. nigrensis and X. multilineatus, whether it is by Mc4r dimerization and/or Mrap2 interaction with Mc4r or other mechanisms. Furthermore, Mc4r in X. hellerii (another swordtail species) and medaka (a model organism phylogenetically close to Xiphophorus) were investigated to understand if the investigated mechanisms are conserved in other species. In medaka, the Mc4r signaling system genes (mc4r, mrap2, pomc, agrp1) are expressed before hatching, with agrp1 being highly upregulated during hatching and first feeding. These genes are mainly expressed in adult brain, and the transcripts of mrap2 co-localize with mc4r indicating a function in modulating Mc4r signaling. Functional comparison between wild-type and mc4r knockout medaka showed that Mc4r knockout does not affect puberty timing but significantly delays hatching due to the retarded embryonic development of knockout medaka. Hence, the Mc4r system in medaka is involved in regulation of growth rather than puberty. In Xiphophorus, expression co-localization of mc4r and mrap2 in X. nigrensis and X. hellerii fish adult brains was characterized by in situ hybridization. In both species, large males exhibit strikingly high expression of mc4r while mrap2 shows similar expression level in the large and small male and female. Differently, X. hellerii has only A-type alleles indicating that the puberty regulation mechanisms evolved independently in Xiphophorus genus. Functional analysis of Mrap2 and Mc4r A/B1/B2 alleles of X. multilineatus showed that increased Mrap2 amounts induce higher cAMP response but EC50 values do not change much upon Mrap2 co-expression with Mc4r (expressing only A allele or A and B1 alleles). A and B1 alleles were expressed higher in large male brains, while B2 alleles were only barely expressed. Mc4r A-B1 cells have lower cAMP production than Mc4r A cells. Together, this indicates a role of Mc4r alleles, but not Mrap2, in puberty onset regulation signaling. Interaction studies by FRET approach evidenced that Mc4r A and B alleles can form heterodimers and homodimers in vitro, but only for a certain fraction of the expressed receptors. Single-molecule colocalization study using super-resolution microscope dSTORM confirmed that only few Mc4r A and B1 receptors co-localized on the membrane. Altogether, the species-specific puberty onset regulation in X. nigrensis and X. multilineatus is linked to the presence of Mc4r B alleles and to some extent to its interaction with A allele gene products. This is reasoned to result in certain levels of cAMP signaling which reaches the dynamic or static threshold to permit late puberty in large males. In summary, puberty onset regulation by dominant negative effect of Mc4r mutant alleles is a special mechanism that is found so far only in X. nigrensis and X. multilineatus. Other Xiphophorus species obviously evolved the same function of the pathway by diverse mechanisms. Mc4r in other fish (medaka) has a role in regulation of growth, reminiscent of its role in energy homeostasis in humans. The results of this study will contribute to better understand the biochemical and physiological functions of the Mc4r system in vertebrates including human.}, subject = {Japank{\"a}rpfling}, language = {en} }