@article{SongXiuHuangetal.2011, author = {Song, Ning-Ning and Xiu, Jian-Bo and Huang, Ying and Chen, Jia-Yin and Zhang, Lei and Gutknecht, Lise and Lesch, Klaus Peter and Li, He and Ding, Yu-Qiang}, title = {Adult Raphe-Specific Deletion of Lmx1b Leads to Central Serotonin Deficiency}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {1}, doi = {10.1371/journal.pone.0015998}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133581}, pages = {e15998}, year = {2011}, abstract = {The transcription factor Lmx1b is essential for the differentiation and survival of central serotonergic (5-HTergic) neurons during embryonic development. However, the role of Lmx1b in adult 5-HTergic neurons is unknown. We used an inducible Cre-LoxP system to selectively inactivate Lmx1b expression in the raphe nuclei of adult mice. Pet1-CreER(T2) mice were generated and crossed with Lmx1b(flox/flox) mice to obtain Pet1-CreER(T2); Lmx1b(flox/flox) mice (which termed as Lmx1b iCKO). After administration of tamoxifen, the level of 5-HT in the brain of Lmx1b iCKO mice was reduced to 60\% of that in control mice, and the expression of tryptophan hydroxylase 2 (Tph2), serotonin transporter (Sert) and vesicular monoamine transporter 2 (Vmat2) was greatly down-regulated. On the other hand, the expression of dopamine and norepinephrine as well as aromatic L-amino acid decarboxylase (Aadc) and Pet1 was unchanged. Our results reveal that Lmx1b is required for the biosynthesis of 5-HT in adult mouse brain, and it may be involved in maintaining normal functions of central 5-HTergic neurons by regulating the expression of Tph2, Sert and Vmat2.}, language = {en} } @article{PhamHelluyKleinschnitzetal.2011, author = {Pham, Mirko and Helluy, Xavier and Kleinschnitz, Christoph and Kraft, Peter and Bartsch, Andreas J. and Jakob, Peter and Nieswandt, Bernhard and Bendszus, Martin and Guido, Stoll}, title = {Sustained Reperfusion after Blockade of Glycoprotein-Receptor-Ib in Focal Cerebral Ischemia: An MRI Study at 17.6 Tesla}, series = {PLoS ONE}, volume = {6}, journal = {PLoS ONE}, number = {4}, doi = {10.1371/journal.pone.0018386}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142608}, pages = {e18386}, year = {2011}, abstract = {Background: Inhibition of early platelet adhesion by blockade of glycoprotein-IB (GPIb) protects mice from ischemic stroke. To elucidate underlying mechanisms in-vivo, infarct development was followed by ultra-high field MRI at 17.6 Tesla. Methods: Cerebral infarction was induced by transient-middle-cerebral-artery-occlusion (tMCAO) for 1 hour in C57/BL6 control mice (N = 10) and mice treated with 100 mg Fab-fragments of the GPIb blocking antibody p0p/B 1 h after tMCAO (N = 10). To control for the effect of reperfusion, additional mice underwent permanent occlusion and received anti-GPIb treatment (N = 6; pMCAO) or remained without treatment (N = 3; pMCAO). MRI 2 h and 24 h after MCAO measured cerebral-blood-flow (CBF) by continuous arterial-spin labelling, the apparent-diffusion-coefficient (ADC), quantitative-T2 and T2-weighted imaging. All images were registered to a standard mouse brain MRI atlas and statistically analysed voxel-wise, and by cortico-subcortical ROI analysis. Results: Anti-GPIb treatment led to a relative increase of postischemic CBF vs. controls in the cortical territory of the MCA (2 h: 44.2 +/- 6.9 ml/100g/min versus 24 h: 60.5 +/- 8.4; p = 0.0012, F((1,18)) = 14.63) after tMCAO. Subcortical CBF 2 h after tMCAO was higher in anti-GPIb treated animals (45.3 +/- 5.9 vs. controls: 33.6 +/- 4.3; p = 0.04). In both regions, CBF findings were clearly related to a lower probability of infarction (Cortex/Subcortex of treated group: 35\%/65\% vs. controls: 95\%/100\%) and improved quantitative-T2 and ADC. After pMCAO, anti-GPIb treated mice developed similar infarcts preceded by severe irreversible hypoperfusion as controls after tMCAO indicating dependency of stroke protection on reperfusion. Conclusion: Blockade of platelet adhesion by anti-GPIb-Fab-fragments results in substantially improved CBF early during reperfusion. This finding was in exact spatial correspondence with the prevention of cerebral infarction and indicates in-vivo an increased patency of the microcirculation. Thus, progression of infarction during early ischemia and reperfusion can be mitigated by anti-platelet treatment.}, language = {en} }