@phdthesis{Bach2017, author = {Bach, Tobias}, title = {Electromechanical interactions in lithium-ion batteries: Aging effects and analytical use}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-153325}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {In the first part of his work, the causes for the sudden degradation of useable capacity of lithium-ion cells have been studied by means of complementary methods such as computed tomography, Post-Mortem studies and electrochemical analyses. The results obtained point unanimously to heterogeneous aging as a key-factor for the sudden degradation of cell capacity, which in turn is triggered by differences in local compression. At high states of health, the capacity fade rate is moderate but some areas of the graphite electrode degrade faster than others. Still, the localized changes are hardly noticeable on cell level due to averaging effects. Lithium plating occurs first in unevenly compressed areas, creating patterns visible to the human eye. As lithium plating leads to rapid consumption of active lithium, a sudden drop in capacity is observed on cell level. Lithium plating appears to spread out from the initial areas over the whole graphite electrode, quickly consuming the remaining useful lithium and active graphite. It can be hypothesized that a self-amplifying circle of reciprocal acceleration of local lithium loss and material loss causes rapid local degradation. Battery cell designers can improve cycle life by homogeneous pressure distribution in the cell and using negative active materials that are resilient to elevated discharge potentials such as improved carbons or lithium titanate. Also, a sufficiently oversized negative electrode and suitable electrolyte additives can help to avoid lithium plating. When packs are designed, care must be taken not to exert local pressure on parts of cells and to avoid both very high and low states of charge. In the second part of this dissertation the resilience of cylindrical and pouchbag cells to shocks and different vibrations was investigated. Stresses inflicted by vibration and shock tests according to the widely recognized UN38.3 transport test were compared to a long-time test that exposed cells to a 186 days long ordeal of sine sweep vibrations with a profile based on real-world applications. All cells passed visual and electric inspection performed by TU M{\"u}nchen after the vibration tests. Only cylindrical cells subjected to long-term vibrations in axial direction showed an increase in impedance and a loss of capacity that could be recuperated in part. The detailed analyses presented in this thesis gave more details on the damages inflicted by vibrations and shocks and revealed drastic damages in some cases. In cylindrical cells, only movement in axial direction caused damage. Long term vibrations were found to be especially detrimental. No damage whatsoever could be detected for pouch cells, regardless of the test protocol and the direction of movement. The extreme resilience of pouchbag cells shows that the electrode stack of lithium-ion cells is resistant to vibrations, and that damages are caused by design imperfections that can be improved at low cost. The findings of this work, and the general state of research show that it is most crucial to control the lithiation and thus potential of the graphite electrode. In the last part of this work, a new, direct method for charge estimation based on changing transmission is presented. A correlation between transmission of short ultrasonic pulses and state of charge is found. This new technology allows direct measurement of the state of charge. The method is demonstrated for batteries with different positive active materials, showing its versatility. As the observed changes can be traced to the lithiation of graphite, it can be determined without a reference electrode. Already at this early stage of development, the found correlations allow estimation of state of charge. The present hysteresis in the signal height of the slow wave, which is unneglectable especially during discharging at higher currents, will be subject to further investigation. The observed effects can be explained by effects on different length scales. Biot's theory explains the second wave's slowness based on the active material particles size in the range of 0.01 mm and electrolyte-filled pores. Lithiation of graphite changes the porosity of the electrode and thereby the velocity and wavelength of the impulse. When the wavelength approaches the length scale of the layers, 0.1 mm, scattering effects dampen the transmitted signal. Finally, the wavelength of the pulse should be shorter than the transducers diameter to obtain a homogeneous wave front. To conclude, the new method allows the control of each individual cell in a pack independent from the electrical connections of the cells. As the method shows great promise, further studies regarding factors such as long-term behavior, temperature and current rates should be conducted. In this thesis hysteresis was observed and a deeper understanding of the reasons behind it may allow further improvements of measurement precision.}, subject = {Lithium-Ionen-Akkumulator}, language = {en} }