@article{StolpmannBrinkmannSalzmannetal.2012, author = {Stolpmann, K. and Brinkmann, J. and Salzmann, S. and Genkinger, D. and Fritsche, E. and Hutzler, C. and Wajant, H. and Luch, A. and Henkler, F.}, title = {Activation of the aryl hydrocarbon receptor sensitises human keratinocytes for CD95L-and TRAIL-induced apoptosis}, series = {Cell Death \& Disease}, volume = {3}, journal = {Cell Death \& Disease}, number = {e388}, doi = {10.1038/cddis.2012.127}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-133501}, year = {2012}, abstract = {In this study, we have analysed the apoptotic effects of the ubiquitous environmental toxin benzo[ a] pyrene (BP) in HaCaT cells and human keratinocytes. Although prolonged exposure to BP was not cytotoxic on its own, a strong enhancement of CD95 (Fas)-mediated apoptosis was observed with BP at concentrations activating the aryl hydrocarbon receptor (AhR). Importantly, the ultimately mutagenic BP-metabolite, that is, (+)-anti-BP-7,8-diol-9,10-epoxide (BPDE), failed to enhance CD95-mediated cell death, suggesting that the observed pro-apoptotic effect of BP is neither associated with DNA adducts nor DNA-damage related signalling. CD95-induced apoptosis was also enhanced by beta-naphtoflavone, a well-known agonist of the AhR that does not induce DNA damage, thus suggesting a crucial role for AhR activation. Consistently, BP failed to sensitise for CD95L-induced apoptosis in AhR knockdown HaCaT cells. Furthermore, inhibition of CYP1A1 and/or 1B1 expression did not affect the pro-apoptotic crosstalk. Exposure to BP did not increase expression of CD95, but led to augmented activation of caspase-8. Enhancement of apoptosis was also observed with the TRAIL death receptors that activate caspase-8 and apoptosis by similar mechanisms as CD95. Together, these observations indicate an interference of AhR signalling with the activity of receptor-associated signalling intermediates that are shared by CD95 and TRAIL receptors. Our data thus suggest that AhR agonists can enhance cytokine-mediated adversity upon dermal exposure.}, language = {en} } @phdthesis{RauertWunderlich2012, author = {Rauert-Wunderlich, Hilka}, title = {Apoptoseregulation durch TNF im Multiplen Myelom}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-73998}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Der Tumornekrosefaktor (TNF) entfaltet seine vielf{\"a}ltigen biologischen Aktivit{\"a}ten durch die Stimulation der beiden TNF-Rezeptoren TNFR1 und TNFR2. Die TNFR1-vermittelte Signaltransduktion ist in vielen Details gut verstanden, wohingegen die TNFR2-vermittelte Signaltransduktion bis heute kaum untersucht ist. Mit Hilfe einer in unserer Gruppe entwickelten hochaktiven TNFR2-spezifischen TNF-Variante sowie einer bereits l{\"a}nger bekannten TNFR1-spezifischen TNF-Variante wurde in dieser Arbeit die TNF-Signaltransduktion insbesondere im Mutiplen Myelom untersucht. Mit Hilfe der beiden TNF-Varianten konnte gezeigt werden, dass die alleinige Stimulation des TNFR2 die Aktivierung des alternativen NFkappaB-Signalweges vermittelt, wohingegen TNFR1 nicht dazu in der Lage ist. So zeigte sich im Einklang mit der inhibitorischen Funktion des Adapterproteins TRAF2 in der Signaltransduktion des alternativen NFkappaB-Signalweges, dass die TNFR2-Stimulation in einer TRAF2-Depletion resultiert. Dies f{\"u}hrt weiterhin zur Akkumulation von NIK und der Prozessierung von p100 zu seiner aktiven Form p52, den klassischen biochemisch nachweisbaren Ereignissen der Aktivierung des alternativen NFkappaB-Signalweges. Aufgrund der Rolle des NFkappaB-Systems im Multiplen Myelom (MM) und der stimulierenden Wirkung des TNFR1 und TNFR2 auf das NFkappaB-System wurde die Expression und Funktion dieser beiden Rezeptoren auf Myelomzelllinien untersucht. Insbesondere wurde analysiert, welchen Effekt eine spezifische Stimulation der beiden TNF-Rezeptoren auf die apoptotische Sensitivit{\"a}t von Myelomzellen hat. Mit einer Ausnahme wiesen alle untersuchten Myelomzelllinien eine eindeutige TNFR2-Oberfl{\"a}chenexpression auf, die TNFR1-Expression hingegen war heterogen. Die TNFR1-Stimulation in den TNFR1-positiven Zelllinien zeigte keinen wesentlichen Einfluss auf die Zellviabilit{\"a}t. Allerdings resultierte eine Vorstimulation mit TNF in einer gesteigerten Sensitivit{\"a}t f{\"u}r den CD95L-induzierten Zelltod, sch{\"u}tzte aber gleichzeitig vor der TRAIL-vermittelten Induktion der Apoptose. Der gegenl{\"a}ufige Effekt der TNF-Vorstimulation auf den CD95L- und TRAIL-induzierten Zelltod konnte auf die Hochregulation der CD95-Oberfl{\"a}chenexpression und der gesteigerten Expression des antiapoptotischen cFLIPLong-Proteins zur{\"u}ckgef{\"u}hrt werden. Beide Effekte basieren auf der TNF-induzierten Aktivierung des klassischen NFkappaB-Signalweges. Im CD95L-induzierten Zelltod {\"u}berkompensierte die Induktion der CD95-Expression offensichtlich die Hochregulation von cFLIPLong und resultierte in gesteigertem Zelltod. Der TRAIL-induzierte Zelltod hingegen wurde durch die TNF-Vorstimulation abgeschw{\"a}cht, da hier lediglich die durch den klassischen NFkappaB-Signalweg vermittelte gesteigerte Expression des antiapoptotischen cFLIPLong eine Rolle spielte. Desweiteren zeigten die Analysen in dieser Arbeit, dass die TNFR2-Stimulation zu einer Depletion von TRAF2 und z. B. in JJN3-Zellen zu einer Sensitivierung f{\"u}r den TNFR1-induzierten Zelltod f{\"u}hrte. Die Ergebnisse dieser Arbeit zeigten in der Summe somit, dass das TNF-TNFR-Signaling durch verschiedene Mechanismen Einfluss auf den Ausgang der extrinsischen Apoptoseinduktion hat, und dass der Effekt von TNF auf das {\"U}berleben von MM-Zellen kontextabh{\"a}ngig ist.}, subject = {Apoptosis}, language = {de} } @article{ElMeseryTrebingSchaferetal.2013, author = {El-Mesery, M. and Trebing, J. and Schafer, V. and Weisenberger, D. and Siegmund, D. and Wajant, H.}, title = {CD40-directed scFv-TRAIL fusion proteins induce CD40-restricted tumor cell death and activate dendritic cells}, series = {Cell Death \& Disease}, volume = {4}, journal = {Cell Death \& Disease}, number = {e916}, doi = {10.1038/cddis.2013.402}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-128777}, year = {2013}, abstract = {Targeted cancer therapy concepts often aim at the induction of adjuvant antitumor immunity or stimulation of tumor cell apoptosis. There is further evidence that combined application of immune stimulating and tumor apoptosis-inducing compounds elicits a synergistic antitumor effect. Here, we describe the development and characterization of bifunctional fusion proteins consisting of a single-chain variable fragment (scFv) domain derived from the CD40-specific monoclonal antibody G28-5 that is fused to the N-terminus of stabilized trimeric soluble variants of the death ligand TNF-related apoptosis-inducing ligand (TRAIL). As shown before by us and others for other cell surface antigen-targeted scFv-TRAIL fusion proteins, scFv:G28-TRAIL displayed an enhanced capacity to induce apoptosis upon CD40 binding. Studies with scFv:G28 fusion proteins of TRAIL mutants that discriminate between the two TRAIL death receptors, TRAILR1 and TRAILR2, further revealed that the CD40 binding-dependent mode of apoptosis induction of scFv:G28-TRAIL is operable with each of the two TRAIL death receptors. Binding of scFv:G28-TRAIL fusion proteins to CD40 not only result in enhanced TRAIL death receptor signaling but also in activation of the targeted CD40 molecule. In accordance with the latter, the scFv:G28-TRAIL fusion proteins triggered strong CD40-mediated maturation of dendritic cells. The CD40-targeted TRAIL fusion proteins described in this study therefore represent a novel type of bifunctional fusion proteins that couple stimulation of antigen presenting cells and apoptosis induction.}, language = {en} } @article{TrebingElMeserySchaeferetal.2014, author = {Trebing, J. and El-Mesery, M. and Sch{\"a}fer, V. and Weisenberger, D. and Siegmund, D. and Silence, K. and Wajant, H.}, title = {CD70-restricted specific activation of TRAILR1 or TRAILR2 using scFv-targeted TRAIL mutants}, series = {Cell Death \& Disease}, volume = {5}, journal = {Cell Death \& Disease}, doi = {10.1038/cddis.2013.555}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-120078}, pages = {e1035}, year = {2014}, abstract = {To combine the CD27 stimulation inhibitory effect of blocking CD70 antibodies with an antibody-dependent cellular cytotoxicity (ADCC)-independent, cell death-inducing activity for targeting of CD70-expressing tumors, we evaluated here fusion proteins of the apoptosis-inducing TNF family member TRAIL and a single-chain variable fragment (scFv) derived from a high-affinity llama-derived anti-human CD70 antibody (lαhCD70). A fusion protein of scFv:lαhCD70 with TNC-TRAIL, a stabilized form of TRAIL, showed strongly enhanced apoptosis induction upon CD70 binding and furthermore efficiently interfered with CD70-CD27 interaction. Noteworthy, introduction of recently identified mutations that discriminate between TRAILR1 and TRAILR2 binding into the TRAIL part of scFv:lαhCD70-TNC-TRAIL resulted in TRAIL death receptor-specific fusion proteins with CD70-restricted activity.}, language = {en} } @article{OthmanBekhitAnanyetal.2021, author = {Othman, Eman M. and Bekhit, Amany A. and Anany, Mohamed A. and Dandekar, Thomas and Ragab, Hanan M. and Wahid, Ahmed}, title = {Design, Synthesis, and Anticancer Screening for Repurposed Pyrazolo[3,4-d]pyrimidine Derivatives on Four Mammalian Cancer Cell Lines}, series = {Molecules}, volume = {26}, journal = {Molecules}, number = {10}, issn = {1420-3049}, doi = {10.3390/molecules26102961}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-239734}, year = {2021}, abstract = {The present study reports the synthesis of new purine bioisosteres comprising a pyrazolo[3,4-d]pyrimidine scaffold linked to mono-, di-, and trimethoxy benzylidene moieties through hydrazine linkages. First, in silico docking experiments of the synthesized compounds against Bax, Bcl-2, Caspase-3, Ki67, p21, and p53 were performed in a trial to rationalize the observed cytotoxic activity for the tested compounds. The anticancer activity of these compounds was evaluated in vitro against Caco-2, A549, HT1080, and Hela cell lines. Results revealed that two (5 and 7) of the three synthesized compounds (5, 6, and 7) showed high cytotoxic activity against all tested cell lines with IC50 values in the micro molar concentration. Our in vitro results show that there is no significant apoptotic effect for the treatment with the experimental compounds on the viability of cells against A549 cells. Ki67 expression was found to decrease significantly following the treatment of cells with the most promising candidate: drug 7. The overall results indicate that these pyrazolopyrimidine derivatives possess anticancer activity at varying doses. The suggested mechanism of action involves the inhibition of the proliferation of cancer cells.}, language = {en} } @article{KlingseisenEhrenschwenderHeigletal.2012, author = {Klingseisen, Laura and Ehrenschwender, Martin and Heigl, Ulrike and Wajant, Harald and Hehlgans, Thomas and Sch{\"u}tze, Stefan and Schneider-Brachert, Wulf}, title = {E3-14.7K Is Recruited to TNF-Receptor 1 and Blocks TNF Cytolysis Independent from Interaction with Optineurin}, series = {PLoS One}, volume = {7}, journal = {PLoS One}, number = {6}, doi = {10.1371/journal.pone.0038348}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-135687}, pages = {e38348}, year = {2012}, abstract = {Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor kappa B (NF-kappa B) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis.}, language = {en} } @article{SiegmundZaitsevaWajant2023, author = {Siegmund, Daniela and Zaitseva, Olena and Wajant, Harald}, title = {Fn14 and TNFR2 as regulators of cytotoxic TNFR1 signaling}, series = {Frontiers in Cell and Developmental Biology}, volume = {11}, journal = {Frontiers in Cell and Developmental Biology}, issn = {2296-634X}, doi = {10.3389/fcell.2023.1267837}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-354304}, year = {2023}, abstract = {Tumor necrosis factor (TNF) receptor 1 (TNFR1), TNFR2 and fibroblast growth factor-inducible 14 (Fn14) belong to the TNF receptor superfamily (TNFRSF). From a structural point of view, TNFR1 is a prototypic death domain (DD)-containing receptor. In contrast to other prominent death receptors, such as CD95/Fas and the two TRAIL death receptors DR4 and DR5, however, liganded TNFR1 does not instruct the formation of a plasma membrane-associated death inducing signaling complex converting procaspase-8 into highly active mature heterotetrameric caspase-8 molecules. Instead, liganded TNFR1 recruits the DD-containing cytoplasmic signaling proteins TRADD and RIPK1 and empowers these proteins to trigger cell death signaling by cytosolic complexes after their release from the TNFR1 signaling complex. The activity and quality (apoptosis versus necroptosis) of TNF-induced cell death signaling is controlled by caspase-8, the caspase-8 regulatory FLIP proteins, TRAF2, RIPK1 and the RIPK1-ubiquitinating E3 ligases cIAP1 and cIAP2. TNFR2 and Fn14 efficiently recruit TRAF2 along with the TRAF2 binding partners cIAP1 and cIAP2 and can thereby limit the availability of these molecules for other TRAF2/cIAP1/2-utilizing proteins including TNFR1. Accordingly, at the cellular level engagement of TNFR2 or Fn14 inhibits TNFR1-induced RIPK1-mediated effects reaching from activation of the classical NFκB pathway to induction of apoptosis and necroptosis. In this review, we summarize the effects of TNFR2- and Fn14-mediated depletion of TRAF2 and the cIAP1/2 on TNFR1 signaling at the molecular level and discuss the consequences this has in vivo.}, language = {en} } @phdthesis{Warnke2007, author = {Warnke, Clemens}, title = {Mechanismen TNF-induzierter Genexpression}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-23989}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2007}, abstract = {TNF wird zun{\"a}chst als TypII-Transmembranprotein (mTNF) gebildet und erst anschließend durch spezifische Spaltung durch die Metalloprotease TACE zum l{\"o}slichen Zytokin sTNF prozessiert. Da mTNF der alleinige Hauptaktivator des TNFR2 ist und sich bisherige Untersuchungen zum TNF-Signaling weitgehend auf sTNF konzentrierten, ist vergleichsweise wenig {\"u}ber TNFR2-vermittelte Signaltransduktion bekannt. An TNFR1 sind dagegen beide TNF-Varianten bioaktiv. Trotz intensiver Untersuchung des TNFR1-Signaling sind jedoch auch hier viele Fragen noch unbeantwortet. Derzeit existieren deshalb zum TNFR1-Signaling zwei verschiedene Modellvorstellungen nebeneinander. Im ersten Modell, dem Modell der Kompartmentalisation, bindet TRADD erst nach Rezeptorinternalisierung an TNFR1, genauso wie FADD und Caspase-8. Die Rezeptorinternalisierung nach Ligandenbindung gilt hier daher als Voraussetzung f{\"u}r die TRADD-Rekrutierung und f{\"u}r die Apoptoseinduktion. Im zweiten Modell, dem Modell zweier sequentiell arbeitender Signalkomplexe, bindet TRADD dagegen bereits im membrangebundenen Signalkomplex an TNFR1. Anschließend dissoziiert TRADD vom Rezeptor, um im Zytoplasma einen zweiten, apoptoseinduzierenden Komplex mit FADD und Caspase-8 zu formen. Um mehr {\"u}ber TNFR2 zu erfahren und um das TNFR1-Signaling besser zu verstehen, wurden in dieser Arbeit die Signaltransduktion und die Geninduktion {\"u}ber TNFR1 und TNFR2 nach Stimulation mit mTNF untersucht. Ziel war es letztlich, eine Methode zu etablieren, die es erlaubt, membrangebundene TNFR1- und TNFR2-Signalkomplexe getrennt zu isolieren. Dazu wurden zun{\"a}chst nicht zu sTNF spaltbare TNFR1- bzw. TNFR2-spezifische mTNF-Varianten mit GST-Tag hinsichtlich Rezeptorbindung und Rezeptoraktivierung n{\"a}her charakterisiert. Die selektive Bindung dieser mTNF-Varianten an TNFR1 bzw. TNFR2 konnte gezeigt werden. Auch der Nachweis ihre Funktionalit{\"a}t in Versuchen zur IL8-Induktion war m{\"o}glich. Mit Hilfe der TNFR1-spezifischen mTNF-Variante gelang im GST-Fishing die Koimmunopr{\"a}zipitation von TNFR1, TRADD und TRAF2 und damit die Isolierung des membrangebundenen Signalkomplexes des TNFR1. Mit Hilfe einer TNFR2-spezifischen Variante konnten dagegen TNFR2 und TRAF2 koimmunopr{\"a}zipitiert werden, TRADD dagegen nicht. Somit ließen sich mit den rezeptorspezifischen Varianten von mTNF die Rezeptorsignalkomplexe des TNFR1 und TNFR2 getrennt isolieren. Interessant war dabei insbesondere die TRADD-Rekrutierung an TNFR1 im membrangebundenen TNFR1-Signalkomplex. Da die Internalisierung von TNFR1 nach mTNF-Stimulation schwer vorstellbar ist, bindet TRADD offensichtlich an TNFR1, ohne dass eine Rezeptorinternalisierung Voraussetzung w{\"a}re. Damit erscheint das Modell der Kompartmentalisation zumindest f{\"u}r mTNF wenig plausibel. Dagegen sind die bisher f{\"u}r mTNF erhobenen Daten mit einer TRADD-Dissoziation vom Rezeptor vereinbar, weshalb ein Modell zweier sequentiell arbeitender Signalkomplexe durchaus auch f{\"u}r mTNF G{\"u}ltigkeit besitzen k{\"o}nnte.}, subject = {Tumor-Nekrose-Faktor}, language = {de} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202416}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} } @article{Wajant2019, author = {Wajant, Harald}, title = {Molecular mode of action of TRAIL receptor agonists—common principles and their translational exploitation}, series = {Cancers}, volume = {11}, journal = {Cancers}, number = {7}, doi = {10.3390/cancers11070954}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-201833}, pages = {954}, year = {2019}, abstract = {Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.}, language = {en} }