@phdthesis{Krebs2023, author = {Krebs, Johannes Heinrich}, title = {Investigation of Dicarba-closo-dodecaborane as a Substituent on Three-coordinate Boron and as an Acceptor in a Pyrene-Donor-Acceptor System}, doi = {10.25972/OPUS-28675}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-286758}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {1. Bis(1-(4-tolyl)-carboran-2-yl)-(4-tolyl)-borane, a new bis(o-carboranyl)-(R)-borane 1 was synthesised by lithiation of the o-carboranyl precursor and subsequent salt metathesis reaction with (4-tolyl)BBr2. Cyclic voltammetry experiments on 1 show multiple distinct reduction events with a one-electron first reduction. In a selective reduction experiment the corresponding paramagnetic radical anion 1•- was isolated and characterized. Single-crystal structure analyses allow an in-depth comparison of 1, 1•-, their calculated geometries, and the S1 excited state of 1. 2. The choice of backbone linker for ortho-bis-(9-borafluorene)s has a great influence on the LUMO located at the boron centers and therefore the reactivity of the respective compounds. Herein, we report the room temperature rearrangement of 1,2-bis-(9-borafluorenyl-)-ortho-carborane, C2B10H10-1,2-[B(C12H8)]2 ([2a]) featuring o-carborane as the inorganic three-dimensional backbone and the synthesis of 1,2-bis-(9-borafluorenyl-)benzene, C6H4-1,2-[B(C12H8)]2 (2b) its phenylene analog. DFT calculations on the transition state for the rearrangement support an intramolecular C-H bond activation process via an SEAr-like mechanism in [2a], and predicted that the same rearrangement would take place in 2b, but at elevated temperatures, which indeed proved to be the case. 3. We synthesized 4 a julolidine-like pyrenyl-o-carborane, with pyrene substituted at the 2,7-positions on the HOMO/LUMO nodal plane, continuing our research. Using solid state molecular structures, photophysical data, cyclic voltammetry, DFT and TD-DFT calculations we compare o-carborane and the B(mes)2 (mes = 2,4,6-Me3C6H2) as acceptor groups and confirm the julolidine-like donor strength.}, subject = {closo-Borane}, language = {en} } @phdthesis{Arnold2001, author = {Arnold, Markus A.}, title = {Oxidative DNA-Sch{\"a}digung durch elektronisch angeregte Carbonylverbindungen und daraus gebildete Radikalspezies}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1182038}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {Mittels Laserblitz-Photolyse wurden die Triplettlebenszeiten sowie die L{\"o}schraten der Triplettzust{\"a}nde verschiedener Acetophenonderivate durch dG, 8-oxodG, DNA, molekularen Sauerstoff und die Ketone selbst bestimmt. F{\"u}r AP-OAc, AP und BP wurden Triplettlebensdauern von 7-9 µs gemessen, w{\"a}hrend die Triplettzust{\"a}nde von AP-OH und AP-OtBu aufgrund alpha Spaltung deutlich kurzlebiger waren (ca. 1 µs); die alpha Spaltung konnte EPR-spektroskopisch durch Spinabfangexperimente mit DMPO und TEMPO belegt werden. Im Fall von AP-OMe wurde weder dessen Triplettzustand noch die Bildung von Radikalen detektiert, was auf einer schnell ablaufenden Norrish-Typ-II-Spaltung beruht. Aufgrund dieses photochemischen Verhaltens wurden die Ketone (mit Ausnahme von AP-OMe) in zwei Gruppen klassifiziert, n{\"a}mlich die „Gruppe A"-Ketone (keine Radikalbildung) und die „Gruppe B"-Ketone (Radikalbildner). W{\"a}hrend die „Gruppe A"-Ketone gegen{\"u}ber niedrigen Konzentrationen von DNA (62.5 µM) inaktiv waren, verursachten die bei der Bestrahlung der „Gruppe B"-Ketone generierten Peroxylradikale, neben wenigen direkt induzierten Strangbr{\"u}chen, haupts{\"a}chlich die Guaninoxidationsprodukte 8-oxoGua und guanidinfreisetzende Produkte (GRP). Erst wenn die DNA-Konzentration zehnfach erh{\"o}ht wird (625 µM), tritt bei der Photolyse der „Gruppe A"-Ketone auch DNA-Oxidation durch einen Elektronentransfer von der Guaninbase auf das angeregte Keton ein. Ein analoger Konzentrationseffekt wurde auch in der dG-Oxidation beobachtet, bei niedrigen Substratkonzentrationen sind nur die radikalbildenden „Gruppe B"-Ketone aktiv. Die Tatsache, dass in der dG-Oxidation durch die „Gruppe A"-Ketone kein 8-oxodG detektiert wurde, wurde auf dessen effiziente Oxidation durch dG•+-Radikalkationen zur{\"u}ckgef{\"u}hrt. Die „Gruppe B"-Ketone sind in Abwesenheit von O2 gegen{\"u}ber dG und DNA oxidativ inaktiv, da die in der alpha Spaltung generierten kohlenstoffzentrierten Radikale keine Peroxylradikale bilden k{\"o}nnen. Die „Gruppe A"-Ketone sind gegen{\"u}ber DNA in Abwesenheit wie auch in Anwesenheit von Sauerstoff genauso reaktiv, da der Elektronentransfer von DNA zum Keton unabh{\"a}ngig von Sauerstoff ist. Um mechanistische Einblicke in die oxidative DNA-Sch{\"a}digung zu erlangen, wurden photochemische Modellstudien mit dem Nukleosid dG sowie 8-oxodG durchgef{\"u}hrt, wobei zus{\"a}tzlich Spiroiminodihydantoin gebildet wird. Bis vor kurzem wurde die Struktur dieses Oxidationsproduktes als 4-HO-8-oxodG angenommen, dass zuerst in der dG Oxidation mit Singulettsauerstoff (1O2) beobachtet wurde. Weder Spiroiminodihydantoin noch 4 HO-8-oxodG sind als authentische Verbindungen bekannt, so dass eine zweifelsfreie Strukturaufkl{\"a}rung die Bestimmung der Konnektivit{\"a}t der markierten Positionen erforderte. Diese Zuordnung erfolgte mittels eines SELINQUATE-NMR Spektrums, mit dem schl{\"u}ssig die 4 HO-8-oxodG-Struktur ausgeschlossen wurde. Wie alle „Gruppe B"-Ketone sind auch alle „Gruppe A"-Ketone in Abwesenheit von O2 mit Ausnahme von AP-OAc gegen{\"u}ber dG inert. Dies ist ein Beleg daf{\"u}r, dass der Elektronentransferschritt von dG zum Keton in Abwesenheit von Sauerstoff (im Gegensatz zur DNA-Oxidation) reversibel ist und daher keine Oxidation m{\"o}glich ist, wenn die Ketylradikale nicht durch O2 abgefangen werden. Das aus AP-OAc gebildete Ketylradikal besitzt als einziges einen effektiven unimolekularen Deaktivierungsweg, n{\"a}mlich die Acetation-abspaltung, so dass die Reversibilit{\"a}t nicht mehr m{\"o}glich ist.}, subject = {DNS-Sch{\"a}digung}, language = {de} }