@article{GroeberEngelhardtLangeetal.2016, author = {Groeber, Florian and Engelhardt, Lisa and Lange, Julia and Kurdyn, Szymon and Schmid, Freia F. and R{\"u}cker, Christoph and Mielke, Stephan and Walles, Heike and Hansmann, Jan}, title = {A First Vascularized Skin Equivalent as an Alternative to Animal Experimentation}, series = {ALTEX - Alternatives to Animal Experimentation}, volume = {33}, journal = {ALTEX - Alternatives to Animal Experimentation}, number = {4}, doi = {10.14573/altex.1604041}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-164438}, pages = {415-422}, year = {2016}, abstract = {Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin \& eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.}, language = {en} } @article{ThibaudeauTaubenbergerHolzapfeletal.2014, author = {Thibaudeau, Laure and Taubenberger, Anna V. and Holzapfel, Boris M. and Quent, Verena M. and Fuehrmann, Tobias and Hesami, Parisa and Brown, Toby D. and Dalton, Paul D. and Power, Carl A. and Hollier, Brett G. and Hutmacher, Dietmar W.}, title = {A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone}, series = {Disease Models \& Mechanisms}, volume = {7}, journal = {Disease Models \& Mechanisms}, number = {2}, doi = {10.1242/dmm.014076}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-117466}, pages = {299-309}, year = {2014}, abstract = {The skeleton is a preferred homing site for breast cancer metastasis. To date, treatment options for patients with bone metastases are mostly palliative and the disease is still incurable. Indeed, key mechanisms involved in breast cancer osteotropism are still only partially understood due to the lack of suitable animal models to mimic metastasis of human tumor cells to a human bone microenvironment. In the presented study, we investigate the use of a human tissue-engineered bone construct to develop a humanized xenograft model of breast cancer-induced bone metastasis in a murine host. Primary human osteoblastic cell-seeded melt electrospun scaffolds in combination with recombinant human bone morphogenetic protein 7 were implanted subcutaneously in non-obese diabetic/severe combined immunodeficient mice. The tissue-engineered constructs led to the formation of a morphologically intact 'organ' bone incorporating a high amount of mineralized tissue, live osteocytes and bone marrow spaces. The newly formed bone was largely humanized, as indicated by the incorporation of human bone cells and human-derived matrix proteins. After intracardiac injection, the dissemination of luciferase-expressing human breast cancer cell lines to the humanized bone ossicles was detected by bioluminescent imaging. Histological analysis revealed the presence of metastases with clear osteolysis in the newly formed bone. Thus, human tissue-engineered bone constructs can be applied efficiently as a target tissue for human breast cancer cells injected into the blood circulation and replicate the osteolytic phenotype associated with breast cancer-induced bone lesions. In conclusion, we have developed an appropriate model for investigation of species-specific mechanisms of human breast cancer-related bone metastasis in vivo.}, language = {en} } @phdthesis{Hochleitner2018, author = {Hochleitner, Gernot}, title = {Advancing melt electrospinning writing for fabrication of biomimetic structures}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-162197}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {In order to mimic the extracellular matrix for tissue engineering, recent research approaches often involve 3D printing or electrospinning of fibres to scaffolds as cell carrier material. Within this thesis, a micron fibre printing process, called melt electrospinning writing (MEW), combining both additive manufacturing and electrospinning, has been investigated and improved. Thus, a unique device was developed for accurate process control and manufacturing of high quality constructs. Thereby, different studies could be conducted in order to understand the electrohydrodynamic printing behaviour of different medically relevant thermoplastics as well as to characterise the influence of MEW on the resulting scaffold performance. For reproducible scaffold printing, a commonly occurring processing instability was investigated and defined as pulsing, or in extreme cases as long beading. Here, processing analysis could be performed with the aim to overcome those instabilities and prevent the resulting manufacturing issues. Two different biocompatible polymers were utilised for this study: poly(ε-caprolactone) (PCL) as the only material available for MEW until then and poly(2-ethyl-2-oxazoline) for the first time. A hypothesis including the dependency of pulsing regarding involved mass flows regulated by the feeding pressure and the electrical field strength could be presented. Further, a guide via fibre diameter quantification was established to assess and accomplish high quality printing of scaffolds for subsequent research tasks. By following a combined approach including small sized spinnerets, small flow rates and high field strengths, PCL fibres with submicron-sized fibre diameters (f{\O} = 817 ± 165 nm) were deposited to defined scaffolds. The resulting material characteristics could be investigated regarding molecular orientation and morphological aspects. Thereby, an alignment and isotropic crystallinity was observed that can be attributed to the distinct acceleration of the solidifying jet in the electrical field and by the collector uptake. Resulting submicron fibres formed accurate but mechanically sensitive structures requiring further preparation for a suitable use in cell biology. To overcome this handling issue, a coating procedure, by using hydrophilic and cross-linkable star-shaped molecules for preparing fibre adhesive but cell repellent collector surfaces, was used. Printing PCL fibre patterns below the critical translation speed (CTS) revealed the opportunity to manufacture sinusoidal shaped fibres analogously to those observed using purely viscous fluids falling on a moving belt. No significant influence of the high voltage field during MEW processing could be observed on the buckling phenomenon. A study on the sinusoidal geometry revealed increasing peak-to-peak values and decreasing wavelengths as a function of decreasing collector speeds sc between CTS > sc ≥ 2/3 CTS independent of feeding pressures. Resulting scaffolds printed at 100 \%, 90 \%, 80 \% and 70 \% of CTS exhibited significantly different tensile properties, foremost regarding Young's moduli (E = 42 ± 7 MPa to 173 ± 22 MPa at 1 - 3 \% strain). As known from literature, a changed morphology and mechanical environment can impact cell performance substantially leading to a new opportunity of tailoring TE scaffolds. Further, poly(L-lactide-co-ε-caprolactone-co-acryloyl carbonate) as well as poly(ε-caprolactone-co-acryloyl carbonate) (PCLAC) copolymers could be used for MEW printing. Those exhibit the opportunity for UV-initiated radical cross-linking in a post-processing step leading to significantly increased mechanical characteristics. Here, single fibres of the polymer composed of 90 mol.\% CL and 10 mol.\% AC showed a considerable maximum tensile strength of σmax = 53 ± 16 MPa. Furthermore, sinusoidal meanders made of PCLAC yielded a specific tensile stress-strain characteristic mimicking the qualitative behaviour of tendons or ligaments. Cell viability by L929 murine fibroblasts and live/dead staining with human mesenchymal stem cells revealed a promising biomaterial behaviour pointing out MEW printed PCLAC scaffolds as promising choice for medical repair of load-bearing soft tissue. Indeed, one apparent drawback, the small throughput similar to other AM methods, may still prevent MEW's industrial application yet. However, ongoing research focusses on enlargement of manufacturing speed with the clear perspective of relevant improvement. Thereby, the utilisation of large spinneret sizes may enable printing of high volume rates, while downsizing the resulting fibre diameter via electrical field and mechanical stretching by the collector uptake. Using this approach, limitations of FDM by small nozzle sizes could be overcome. Thinking visionary, such printing devices could be placed in hospitals for patient-specific printing-on-demand therapies one day. Taking the evolved high deposition precision combined with the unique small fibre diameter sizes into account, technical processing of high performance membranes, filters or functional surface finishes also stands to reason.}, subject = {scaffold}, language = {en} } @article{PereiraTrivanovićHerrmann2019, author = {Pereira, A. R. and Trivanović, D. and Herrmann, M.}, title = {Approaches to mimic the complexity of the skeletal mesenchymal stem/stromal cell niche in vitro}, series = {European Cells and Materials}, volume = {37}, journal = {European Cells and Materials}, issn = {1473-2262}, doi = {10.22203/eCM.v037a07}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-268823}, pages = {88-112}, year = {2019}, abstract = {Mesenchymal stem/stromal cells (MSCs) are an essential element of most modern tissue engineering and regenerative medicine approaches due to their multipotency and immunoregulatory functions. Despite the prospective value of MSCs for the clinics, the stem cells community is questioning their developmental origin, in vivo localization, identification, and regenerative potential after several years of far-reaching research in the field. Although several major progresses have been made in mimicking the complexity of the MSC niche in vitro, there is need for comprehensive studies of fundamental mechanisms triggered by microenvironmental cues before moving to regenerative medicine cell therapy applications. The present comprehensive review extensively discusses the microenvironmental cues that influence MSC phenotype and function in health and disease - including cellular, chemical and physical interactions. The most recent and relevant illustrative examples of novel bioengineering approaches to mimic biological, chemical, and mechanical microenvironmental signals present in the native MSC niche are summarized, with special emphasis on the forefront techniques to achieve bio-chemical complexity and dynamic cultures. In particular, the skeletal MSC niche and applications focusing on the bone regenerative potential of MSC are addressed. The aim of the review was to recognize the limitations of the current MSC niche in vitro models and to identify potential opportunities to fill the bridge between fundamental science and clinical application of MSCs.}, language = {en} } @phdthesis{Scheller2012, author = {Scheller, Katharina}, title = {Charakterisierung und Anwendung von humanen, prim{\"a}ren mikrovaskul{\"a}ren Endothelzellen mit erweiterter Proliferationsf{\"a}higkeit}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-76577}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Das Arbeitsgebiet Tissue Engineering befasst sich mit der Kl{\"a}rung der Mechanismen, die der Funktionen verschiedener Gewebearten zu Grunde liegen sowie mit der Entwicklung alternativer Strategien zur Behandlung von Organversagen bzw. Organverlusten. Einer der kritischsten Punkte im Tissue Engineering ist die ausreichende Versorgung der Zellen mit N{\"a}hrstoffen und Sauerstoff. Bioartifizielle Gewebe mit einer Dicke von bis zu 200 µm k{\"o}nnen mittels Diffusion ausreichend versorgt werden. F{\"u}r dickere Transplantate ist die Versorgung der Zellen alleine durch Diffusion jedoch nicht gegeben. Hierf{\"u}r m{\"u}ssen Mechanismen und Strategien zur Pr{\"a}vaskularisierung der artifiziellen Gewebekonstrukte entwickelt werden, damit die N{\"a}hrstoff- und Sauerstoffversorgung aller Zellen, auch im Inneren des Transplantates, von Anfang an gew{\"a}hrleistet ist. Eine wichtige Rolle bei der Pr{\"a}vaskularisierung spielt die Angiogenese. Dabei ist die Wahl einer geeigneten Zellquelle entscheidend, da die Zellen die Basis f{\"u}r die Angiogenese darstellen. Mikrovaskul{\"a}re Endothelzellen (mvEZ) sind maßgeblich an der Angiogenese beteiligt. Das Problem bei der Verwendung von humanen prim{\"a}ren mvEZ ist ihre geringe Verf{\"u}gbarkeit, ihre limitierte Proliferationskapazit{\"a}t und der schnelle Verlust ihrer typischen Endothelzellmarker in-vitro. Der Aufbau standardisierter in-vitro Testsysteme ist durch die geringe Zellausbeute auch nicht m{\"o}glich. Die upcyte® Technologie bietet hierf{\"u}r einen L{\"o}sungsansatz. In der vorliegenden Arbeit konnten upcyte® mvEZ als Alternative zu prim{\"a}ren mvEZ generiert werden. Es konnte gezeigt werden, dass die Zellen eine erweiterte Proliferationsf{\"a}higkeit aufweisen und im Vergleich zu prim{\"a}ren mvEZ durchschnittlich 15 zus{\"a}tzliche Populationsverdopplungen leisten k{\"o}nnen. Dadurch ist es m{\"o}glich 3x104-fach mehr upcyte® mvEZ eines Spenders zu generieren verglichen mit den korrespondierenden Prim{\"a}rzellen. Die gute und ausreichende Verf{\"u}gbarkeit der Zellen macht sie interessant f{\"u}r die Standardisierung von in-vitro Testsystemen, ebenso k{\"o}nnen die Zellen zur Pr{\"a}vaskularisierung von Transplantaten eingesetzt werden. Upcyte® mvEZ zeigen zahlreiche Prim{\"a}rzellmerkmale, die in der Literatur beschrieben sind. Im konfluenten Zustand zeigen sie die f{\"u}r prim{\"a}re mvEZ spezifische pflastersteinartige Morphologie. Dar{\"u}ber hinaus exprimieren upcyte® mvEZ typische Endothelzellmarker wie CD31, vWF, eNOS, CD105, CD146 und VEGFR-2 vergleichbar zu prim{\"a}ren mvEZ. Eine weitere endothelzellspezifische Eigenschaft ist die Bindung von Ulex europaeus agglutinin I Lektin an die alpha-L-Fucose enthaltene Kohlenhydratstrukturen von mvEZs. Auch hier wurden upcyte® Zellen mit prim{\"a}ren mvEZ verglichen und zeigten die hierf{\"u}r charkteristischen Strukturen. Zus{\"a}tzlich zu Morphologie, Proliferationskapazit{\"a}t und endothelzellspezifischen Markern, zeigen upcyte® mvEZ auch mehrere funktionelle Eigenschaften, welche in prim{\"a}ren mvEZ beobachtet werden k{\"o}nnen, wie beispielsweise die Aufnahme von Dil-markiertem acetyliertem Low Density Lipoprotein (Dil-Ac-LDL) oder die F{\"a}higkeit den Prozess der Angiognese zu unterst{\"u}tzen. Zus{\"a}tzlich bilden Sph{\"a}roide aus upcyte® mvEZ dreidimensionale lumin{\"a}re Zellformationen in einer Kollagenmatrix aus. Diese Charakteristika zeigen den quasi-prim{\"a}ren Ph{\"a}notyp der upcyte® mvEZs. Upcyte® mvEZ stellen dar{\"u}ber hinaus eine neuartige m{\"o}gliche Zellquelle f{\"u}r die Generierung pr{\"a}vaskularisierter Tr{\"a}germaterialien im Tissue Engineering dar. In der vorliegenden Arbeit konnte die Wiederbesiedlung der biologisch vaskularisierte Matrix (BioVaSc) mit upcyte® mvEZ vergleichbar zu prim{\"a}ren mvEZ gezeigt werden. Der Einsatz von upcyte® mvEZ in der BioVaSc stellt einen neuen, vielversprechenden Ansatz zur Herstellung eines vaskularisierten Modells f{\"u}r Gewebekonstrukte dar, wie beispielsweise einem Leberkonstrukt. Zusammenfassend konnte in der vorliegenden Arbeit gezeigt werden, dass upcyte® mvEZ vergleichbar zu prim{\"a}ren mvEZs sind und somit eine geeignete Alternative f{\"u}r die Generierung pr{\"a}vaskulierter Tr{\"a}germaterialien und Aufbau von in-vitro Testsystemen darstellen. Dar{\"u}ber hinaus wurde ein neues, innovatives System f{\"u}r die Generierung einer perfundierten, mit Endothelzellen wiederbesiedelten Matrix f{\"u}r k{\"u}nstliches Gewebe in-vitro entwickelt.}, subject = {Tissue Engineering}, language = {de} } @article{WagenbrennerMayerWagnerRudertetal.2021, author = {Wagenbrenner, Mike and Mayer-Wagner, Susanne and Rudert, Maximilian and Holzapfel, Boris Michael and Weissenberger, Manuel}, title = {Combinations of hydrogels and mesenchymal stromal cells (MSCs) for cartilage tissue engineering — a review of the literature}, series = {Gels}, volume = {7}, journal = {Gels}, number = {4}, issn = {2310-2861}, doi = {10.3390/gels7040217}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250177}, year = {2021}, abstract = {Cartilage offers limited regenerative capacity. Cell-based approaches have emerged as a promising alternative in the treatment of cartilage defects and osteoarthritis. Due to their easy accessibility, abundancy, and chondrogenic potential mesenchymal stromal cells (MSCs) offer an attractive cell source. MSCs are often combined with natural or synthetic hydrogels providing tunable biocompatibility, biodegradability, and enhanced cell functionality. In this review, we focused on the different advantages and disadvantages of various natural, synthetic, and modified hydrogels. We examined the different combinations of MSC-subpopulations and hydrogels used for cartilage engineering in preclinical and clinical studies and reviewed the effects of added growth factors or gene transfer on chondrogenesis in MSC-laden hydrogels. The aim of this review is to add to the understanding of the disadvantages and advantages of various combinations of MSC-subpopulations, growth factors, gene transfers, and hydrogels in cartilage engineering.}, language = {en} } @article{AlHejailanWeigelSchuerleinetal.2022, author = {Al-Hejailan, Reem and Weigel, Tobias and Sch{\"u}rlein, Sebastian and Berger, Constantin and Al-Mohanna, Futwan and Hansmann, Jan}, title = {Decellularization of full heart — optimizing the classical sodium-dodecyl-sulfate-based decellularization protocol}, series = {Bioengineering}, volume = {9}, journal = {Bioengineering}, number = {4}, issn = {2306-5354}, doi = {10.3390/bioengineering9040147}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-270781}, year = {2022}, abstract = {Compared to cell therapy, where cells are injected into a defect region, the treatment of heart infarction with cells seeded in a vascularized scaffold bears advantages, such as an immediate nutrient supply or a controllable and persistent localization of cells. For this purpose, decellularized native tissues are a preferable choice as they provide an in vivo-like microenvironment. However, the quality of such scaffolds strongly depends on the decellularization process. Therefore, two protocols based on sodium dodecyl sulfate or sodium deoxycholate were tailored and optimized for the decellularization of a porcine heart. The obtained scaffolds were tested for their applicability to generate vascularized cardiac patches. Decellularization with sodium dodecyl sulfate was found to be more suitable and resulted in scaffolds with a low amount of DNA, a highly preserved extracellular matrix composition, and structure shown by GAG quantification and immunohistochemistry. After seeding human endothelial cells into the vasculature, a coagulation assay demonstrated the functionality of the endothelial cells to minimize the clotting of blood. Human-induced pluripotent-stem-cell-derived cardiomyocytes in co-culture with fibroblasts and mesenchymal stem cells transferred the scaffold into a vascularized cardiac patch spontaneously contracting with a frequency of 25.61 ± 5.99 beats/min for over 16 weeks. The customized decellularization protocol based on sodium dodecyl sulfate renders a step towards a preclinical evaluation of the scaffolds.}, language = {en} } @article{HrynevichAchenbachJungstetal.2021, author = {Hrynevich, Andrei and Achenbach, Pascal and Jungst, Tomasz and Brook, Gary A. and Dalton, Paul D.}, title = {Design of Suspended Melt Electrowritten Fiber Arrays for Schwann Cell Migration and Neurite Outgrowth}, series = {Macromolecular Bioscience}, volume = {21}, journal = {Macromolecular Bioscience}, number = {7}, doi = {10.1002/mabi.202000439}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-257535}, year = {2021}, abstract = {In this study, well-defined, 3D arrays of air-suspended melt electrowritten fibers are made from medical grade poly(ɛ-caprolactone) (PCL). Low processing temperatures, lower voltages, lower ambient temperature, increased collector distance, and high collector speeds all aid to direct-write suspended fibers that can span gaps of several millimeters between support structures. Such processing parameters are quantitatively determined using a "wedge-design" melt electrowritten test frame to identify the conditions that increase the suspension probability of long-distance fibers. All the measured parameters impact the probability that a fiber is suspended over multimillimeter distances. The height of the suspended fibers can be controlled by a concurrently fabricated fiber wall and the 3D suspended PCL fiber arrays investigated with early post-natal mouse dorsal root ganglion explants. The resulting Schwann cell and neurite outgrowth extends substantial distances by 21 d, following the orientation of the suspended fibers and the supporting walls, often generating circular whorls of high density Schwann cells between the suspended fibers. This research provides a design perspective and the fundamental parametric basis for suspending individual melt electrowritten fibers into a form that facilitates cell culture.}, language = {en} } @article{SchmidtAbinzanoMensingaetal.2020, author = {Schmidt, Stefanie and Abinzano, Florencia and Mensinga, Anneloes and Teßmar, J{\"o}rg and Groll, J{\"u}rgen and Malda, Jos and Levato, Riccardo and Blunk, Torsten}, title = {Differential production of cartilage ECM in 3D agarose constructs by equine articular cartilage progenitor cells and mesenchymal stromal cells}, series = {International Journal of Molecular Sciences}, volume = {21}, journal = {International Journal of Molecular Sciences}, number = {19}, issn = {1422-0067}, doi = {10.3390/ijms21197071}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236180}, year = {2020}, abstract = {Identification of articular cartilage progenitor cells (ACPCs) has opened up new opportunities for cartilage repair. These cells may be used as alternatives for or in combination with mesenchymal stromal cells (MSCs) in cartilage engineering. However, their potential needs to be further investigated, since only a few studies have compared ACPCs and MSCs when cultured in hydrogels. Therefore, in this study, we compared chondrogenic differentiation of equine ACPCs and MSCs in agarose constructs as monocultures and as zonally layered co-cultures under both normoxic and hypoxic conditions. ACPCs and MSCs exhibited distinctly differential production of the cartilaginous extracellular matrix (ECM). For ACPC constructs, markedly higher glycosaminoglycan (GAG) contents were determined by histological and quantitative biochemical evaluation, both in normoxia and hypoxia. Differential GAG production was also reflected in layered co-culture constructs. For both cell types, similar staining for type II collagen was detected. However, distinctly weaker staining for undesired type I collagen was observed in the ACPC constructs. For ACPCs, only very low alkaline phosphatase (ALP) activity, a marker of terminal differentiation, was determined, in stark contrast to what was found for MSCs. This study underscores the potential of ACPCs as a promising cell source for cartilage engineering.}, language = {en} } @article{XuFahmyGarciaWesdorpetal.2023, author = {Xu, Jietao and Fahmy-Garcia, Shorouk and Wesdorp, Marinus A. and Kops, Nicole and Forte, Lucia and De Luca, Claudio and Misciagna, Massimiliano Maraglino and Dolcini, Laura and Filardo, Giuseppe and Labbert{\´e}, Margot and Vanc{\´i}kov{\´a}, Karin and Kok, Joeri and van Rietbergen, Bert and Nickel, Joachim and Farrell, Eric and Brama, Pieter A. J. and van Osch, Gerjo J. V. M.}, title = {Effectiveness of BMP-2 and PDGF-BB adsorption onto a collagen/collagen-magnesium-hydroxyapatite scaffold in weight-bearing and non-weight-bearing osteochondral defect bone repair: in vitro, ex vivo and in vivo evaluation}, series = {Journal of Functional Biomaterials}, volume = {14}, journal = {Journal of Functional Biomaterials}, number = {2}, issn = {2079-4983}, doi = {10.3390/jfb14020111}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-304019}, year = {2023}, abstract = {Despite promising clinical results in osteochondral defect repair, a recently developed bi-layered collagen/collagen-magnesium-hydroxyapatite scaffold has demonstrated less optimal subchondral bone repair. This study aimed to improve the bone repair potential of this scaffold by adsorbing bone morphogenetic protein 2 (BMP-2) and/or platelet-derived growth factor-BB (PDGF-BB) onto said scaffold. The in vitro release kinetics of BMP-2/PDGF-BB demonstrated that PDGF-BB was burst released from the collagen-only layer, whereas BMP-2 was largely retained in both layers. Cell ingrowth was enhanced by BMP-2/PDFG-BB in a bovine osteochondral defect ex vivo model. In an in vivo semi-orthotopic athymic mouse model, adding BMP-2 or PDGF-BB increased tissue repair after four weeks. After eight weeks, most defects were filled with bone tissue. To further investigate the promising effect of BMP-2, a caprine bilateral stifle osteochondral defect model was used where defects were created in weight-bearing femoral condyle and non-weight-bearing trochlear groove locations. After six months, the adsorption of BMP-2 resulted in significantly less bone repair compared with scaffold-only in the femoral condyle defects and a trend to more bone repair in the trochlear groove. Overall, the adsorption of BMP-2 onto a Col/Col-Mg-HAp scaffold reduced bone formation in weight-bearing osteochondral defects, but not in non-weight-bearing osteochondral defects.}, language = {en} }