@article{NeuhausBurekDjuzenovaetal.2012, author = {Neuhaus, Winfried and Burek, Malgorzata and Djuzenova, Cholpon C and Thal, Serge C and Koepsell, Hermann and Roewer, Norbert and F{\"o}rster, Carola Y}, title = {Addition of NMDA-receptor antagonist MK801 during oxygen/glucose deprivation moderately attenuates the up-regulation of glucose uptake after subsequent reoxygenation in brain endothelial cells}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67241}, year = {2012}, abstract = {During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7- fold after 6 h OGD, which was significantly reduced by 10 μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907\% after 6 h OGD and was still higher (210\%) after the 20 h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.}, subject = {Blut-Hirn-Schranke}, language = {en} } @article{CurtazReifschlaegerStraehleetal.2022, author = {Curtaz, Carolin J. and Reifschl{\"a}ger, Leonie and Str{\"a}hle, Linus and Feldheim, Jonas and Feldheim, Julia J. and Schmitt, Constanze and Kiesel, Matthias and Herbert, Saskia-Laureen and W{\"o}ckel, Achim and Meybohm, Patrick and Burek, Malgorzata}, title = {Analysis of microRNAs in exosomes of breast cancer patients in search of molecular prognostic factors in brain metastases}, series = {International Journal of Molecular Sciences}, volume = {23}, journal = {International Journal of Molecular Sciences}, number = {7}, issn = {1422-0067}, doi = {10.3390/ijms23073683}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-284476}, year = {2022}, abstract = {Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.}, language = {en} } @article{CurtazKieselMeybohmetal.2022, author = {Curtaz, Carolin J. and Kiesel, Ludwig and Meybohm, Patrick and W{\"o}ckel, Achim and Burek, Malgorzata}, title = {Anti-hormonal therapy in breast cancer and its effect on the blood-brain barrier}, series = {Cancers}, volume = {14}, journal = {Cancers}, number = {20}, issn = {2072-6694}, doi = {10.3390/cancers14205132}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-290320}, year = {2022}, abstract = {Simple Summary Anti-hormonal therapie regimes are well established in oncological treatments in breast cancer. In contrast there is limited knowledge of their effects on metastatic brain metastases in advanced breast cancer and their ability to cross the blood brain-barrier. In this review, we point out the usual antihormonal therapy options in the primary disease, but also in metastatic breast cancer. In addition, we explain the epidemiological facts of brain metastases, as well as the basics of the blood-brain barrier and how this is overcome by metastase. Last but not least, we deal with the known anti-hormonal therapy options and present clinical studies on their intracerebral effect, as well as the known basics of their blood-brain barrier penetration. Not all common anti-hormonal therapeutics are able to penetrate the CNS. It is therefore important for the treating oncologists to use substances that have been proven to cross the BBB, despite the limited data available. Aromataseinhibitors, especially letrozole, probably also tamoxifen, everolimus and CDK4/6 inhibitors, especially abemaciclib, appear to act intracerebrally by overcoming the blood-brain barrier. Nevertheless, further data must be obtained in basic research, but also health care research in relation to patients with brain metastases. Abstract The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2-negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.}, language = {en} } @article{ShityakovSalvadorPastorinetal.2015, author = {Shityakov, Sergey and Salvador, Ellaine and Pastorin, Giorgia and F{\"o}rster, Carola}, title = {Blood-brain barrier transport studies, aggregation, and molecular dynamics simulation of multiwalled carbon nanotube functionalized with fluorescein isothiocyanate}, series = {International Journal of Nanomedicine}, volume = {10}, journal = {International Journal of Nanomedicine}, doi = {10.2147/IJN.S68429}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-149233}, pages = {1703-1713}, year = {2015}, abstract = {In this study, the ability of a multiwalled carbon nanotube functionalized with fluorescein isothiocyanate (MWCNT-FITC) was assessed as a prospective central nervous system-targeting drug delivery system to permeate the blood-brain barrier. The results indicated that the MWCNT-FITC conjugate is able to penetrate microvascular cerebral endothelial monolayers; its concentrations in the Transwell® system were fully equilibrated after 48 hours. Cell viability test, together with phase-contrast and fluorescence microscopies, did not detect any signs of MWCNT-FITC toxicity on the cerebral endothelial cells. These microscopic techniques also revealed presumably the intracellular localization of fluorescent MWCNT-FITCs apart from their massive nonfluorescent accumulation on the cellular surface due to nanotube lipophilic properties. In addition, the 1,000 ps molecular dynamics simulation in vacuo discovered the phenomenon of carbon nanotube aggregation driven by van der Waals forces via MWCN-TFITC rapid dissociation as an intermediate phase.}, language = {en} } @article{AlbertWeissenbergerMenclSchuhmannetal.2014, author = {Albert-Weissenberger, Christiane and Mencl, Stine and Schuhmann, Michael K. and Salur, Irmak and G{\"o}b, Eva and Langhauser, Friederike and Hopp, Sarah and Hennig, Nelli and Meuth, Sven G. and Nolte, Marc W. and Sir{\´e}n, Anna-Leena and Kleinschnitz, Christoph}, title = {C1-Inhibitor protects from focal brain trauma in a cortical cryolesion mice model by reducing thrombo-inflammation}, series = {Frontiers in Cellular Neuroscience}, volume = {8}, journal = {Frontiers in Cellular Neuroscience}, issn = {1662-5102}, doi = {10.3389/fncel.2014.00269}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-119263}, pages = {269}, year = {2014}, abstract = {Traumatic brain injury (TBI) induces a strong inflammatory response which includes blood-brain barrier damage, edema formation and infiltration of different immune cell subsets. More recently, microvascular thrombosis has been identified as another pathophysiological feature of TBI. The contact-kinin system represents an interface between inflammatory and thrombotic circuits and is activated in different neurological diseases. C1-Inhibitor counteracts activation of the contact-kinin system at multiple levels. We investigated the therapeutic potential of C1-Inhibitor in a model of TBI. Male and female C57BL/6 mice were subjected to cortical cryolesion and treated with C1-Inhibitor after 1 h. Lesion volumes were assessed between day 1 and day 5 and blood-brain barrier damage, thrombus formation as well as the local inflammatory response were determined post TBI. Treatment of male mice with 15.0 IU C1-Inhibitor, but not 7.5 IU, 1 h after cryolesion reduced lesion volumes by ~75\% on day 1. This protective effect was preserved in female mice and at later stages of trauma. Mechanistically, C1-Inhibitor stabilized the blood-brain barrier and decreased the invasion of immune cells into the brain parenchyma. Moreover, C1-Inhibitor had strong antithrombotic effects. C1-Inhibitor represents a multifaceted anti-inflammatory and antithrombotic compound that prevents traumatic neurodegeneration in clinically meaningful settings.}, language = {en} } @article{GabbertDillingMeybohmetal.2020, author = {Gabbert, Lydia and Dilling, Christina and Meybohm, Patrick and Burek, Malgorzata}, title = {Deletion of Protocadherin Gamma C3 Induces Phenotypic and Functional Changes in Brain Microvascular Endothelial Cells In Vitro}, series = {Frontiers in Pharmacology}, volume = {11}, journal = {Frontiers in Pharmacology}, issn = {1663-9812}, doi = {10.3389/fphar.2020.590144}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-219828}, year = {2020}, abstract = {Inflammation of the central nervous system (CNS) is associated with diseases such as multiple sclerosis, stroke and neurodegenerative diseases. Compromised integrity of the blood-brain barrier (BBB) and increased migration of immune cells into the CNS are the main characteristics of brain inflammation. Clustered protocadherins (Pcdhs) belong to a large family of cadherin-related molecules. Pcdhs are highly expressed in the CNS in neurons, astrocytes, pericytes and epithelial cells of the choroid plexus and, as we have recently demonstrated, in brain microvascular endothelial cells (BMECs). Knockout of a member of the Pcdh subfamily, PcdhgC3, resulted in significant changes in the barrier integrity of BMECs. Here we characterized the endothelial PcdhgC3 knockout (KO) cells using paracellular permeability measurements, proliferation assay, wound healing assay, inhibition of signaling pathways, oxygen/glucose deprivation (OGD) and a pro-inflammatory cytokine tumor necrosis factor alpha (TNFα) treatment. PcdhgC3 KO showed an increased paracellular permeability, a faster proliferation rate, an altered expression of efflux pumps, transporters, cellular receptors, signaling and inflammatory molecules. Serum starvation led to significantly higher phosphorylation of extracellular signal-regulated kinases (Erk) in KO cells, while no changes in phosphorylated Akt kinase levels were found. PcdhgC3 KO cells migrated faster in the wound healing assay and this migration was significantly inhibited by respective inhibitors of the MAPK-, β-catenin/Wnt-, mTOR- signaling pathways (SL327, XAV939, or Torin 2). PcdhgC3 KO cells responded stronger to OGD and TNFα by significantly higher induction of interleukin 6 mRNA than wild type cells. These results suggest that PcdhgC3 is involved in the regulation of major signaling pathways and the inflammatory response of BMECs.}, language = {en} } @phdthesis{Wais2012, author = {Wais, Sebastian}, title = {Die Rolle der Glukosetransporter an der Blut-Hirn-Schranke nach einem Sch{\"a}del-Hirn-Trauma und deren eventueller Einfluss auf die Entwicklung eines sekund{\"a}ren Hirn{\"o}dems}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-78998}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2012}, abstract = {Laut der Weltgesundheitsorganisation (WHO) waren in Deutschland 2006 akute isch{\"a}mische Ereignisse des Zentralen Nervensystems (ZNS) die f{\"u}nfth{\"a}ufigste Todesursache. Zu diesen isch{\"a}mischen Ereignissen z{\"a}hlen Schlaganfall, Kardiopulmonale Reanimation, traumatische Hirnverletzungen, sowie perioperative isch{\"a}mische Komplikationen. Aufgrund der schwerwiegenden Folgen, die ein Verlust von Nervenzellen f{\"u}r den Patienten bedeutet, muss die weitere medizinische Akutversorgung den sekund{\"a}ren neuronalen Schaden verhindern oder ihn reduzieren. Vor dieser Arbeit konnten Glukosetransporter-1 (GLUT-1) und Natrium-Glukose-Kotransporter-1 (SGLT1) an der Blut-Hirn-Schranke (BHS) identifiziert werden. Ziel dieser Arbeit war es, das Expressionsverhalten der Glukosetransporter nach einem Sch{\"a}del-Hirn-Trauma (SHT) in vivo und in vitro zu untersuchen, um so den Einfluss und die funktionellen Folgen durch die ver{\"a}nderte Expression der zerebralen Glukosetransporter in der BHS infolge eines SHT zu identifizieren und deren eventuellen Einfluss auf die Entwicklung eines sekund{\"a}ren Hirn{\"o}dems zu erkennen. Hierf{\"u}r wurde als in vivo-Modell das Controlled Cortical Impact Injury (CCII) gew{\"a}hlt, da bei diesem Tierversuchsmodell die Aspekte der traumatischen Kontusion und die damit verbundenen intraparenchymalen Blutungen durch ein epidurales oder subdurales H{\"a}matom im Vordergrund stehen. Es wurden Gehirnschnitte zu fest definierten Zeitpunkten angefertigt (kein CCII (Kontrolle), 15 Minuten {\"U}berleben nach CCII (Prim{\"a}rschaden), 24 Stunden {\"U}berleben nach CCII und 72 Stunden {\"U}berleben nach CCII). Die Darstellung des prim{\"a}ren Schadens im M{\"a}usehirn erfolgte durch die Immunfluoreszenzmikroskopie. Um einen Gewebeschaden, wie es bei einem Hirntrauma der Fall ist, in vitro zu simulieren, wurde das Modell des Sauerstoff-Glukose-Entzuges (OGD) gew{\"a}hlt, da es bei diesem Modell neben einer Nekrose auch zur Apoptose der Nervenzellen kommt, welche ebenfalls bei einem SHT stattfindet. Als geeignetes Zellkulturmodell wurde die cerebralen Endothelzelllinie (cEND) gew{\"a}hlt. Bei dieser Zelllinie handelte es sich um eine Hirnendothelzelllinie aus der Maus. In den in vivo-Versuchen konnte bei GLUT-1 bereits 15 Minuten nach CCII eine gesteigerte Expression festgestellt werden. Dennoch verminderte GLUT-1 im weiteren Verlauf seine Expression auf ein Minimum, welches unterhalb des Ausgangswertes lag. SGLT1, der auch in der BHS identifiziert wurde, reagierte auf einen Prim{\"a}rschaden erst in den Hirnschnitten, die 24 Stunden nach CCI behandelt wurden. In den Hirnschnitten, die 15 Minuten nach CCII behandelt wurden, ver{\"a}nderte sich die SGLT1-Expression zun{\"a}chst nicht. Erst 24 Stunden nach CCII konnte eine gesteigerte Expression von SGLT1 erkannt werden, die aber bei 72 Stunden nach CCII wieder abgenommen hatte. Ein weiterer Glukosetransporter konnte erstmals in der BHS identifiziert werden. SGLT2 zeigte erst 72 Stunden nach CCII eine gesteigerte Expression, in den Hirnschnitten ohne CCII, 15 Minuten nach CCII und 24 Stunden nach CCII konnte keine Ver{\"a}nderung der SGLT2-Expression festgestellt werden. Diese Expressionsreaktion, besonders der Expressions-H{\"o}hepunkt der einzelnen Glukosetransporter, konnte auch in vitro gezeigt werden. Besonders die Identifizierung von SGLT2 in der BHS und die generelle Steigerung der Expressionsrate von GLUT-1, SGLT1 und SGLT2 k{\"o}nnte neue Ansatzpunkte in der Pathophysiologie des diffusen Hirn{\"o}dems nach einem SHT ergeben. Die genaue Rolle der Natriumgekoppelten Glukosetransporter in der BHS muss noch weiter erforscht werden. Best{\"a}tigen weitere Versuche eine zentrale Rolle der SGLTs bei der Entstehung des sekund{\"a}ren Hirnschadens, speziell SGLT2, als hochpotenter Glukosetransporter, so k{\"o}nnte {\"u}ber neue Therapien nachgedacht werden, durch welche spezifisch die Expression der SGLTs, besonders SGLT2, wie es bei Dapagliflozin, Canagliflozin oder Ipragliflozin der Fall w{\"a}re, unterdr{\"u}cken w{\"u}rden.}, subject = {Hirn{\"o}dem}, language = {de} } @phdthesis{Wilhelm2018, author = {Wilhelm, Christian}, title = {Die Rolle von Chronophin bei Schlaganfall-induziertem Funktionsverlust der Blut-Hirn-Schranke}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-163877}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {Der isch{\"a}mische Schlaganfall ist mit einer j{\"a}hrlichen Inzidenz von 200/100 000 Einwohnern die h{\"a}ufigste Gef{\"a}ßerkrankung in Deutschland. Atherothrombose, arterielle Hypertonie und Embolien unterschiedlichen Ursprungs sind die wesentlichen Ursachen des isch{\"a}mischen Schlaganfalls. Die neurologischen Defizite nach einem Schlaganfall resultieren aus einem gest{\"o}rten zerebralen Blutfluss und somit einer insuffizienten Sauerstoffversorgung. Zus{\"a}tzlich ist die {\"O}dembildung, welche von einer gesteigerten Permeabilit{\"a}t der Blut-Hirn-Schranke verursacht wird, am neuronalen Zelltod beteiligt. Chronophin ist eine Aktinzytoskelett-regulierende Serin-Phosphatase. In einem isch{\"a}mischen Schlaganfall-Modell konnte im Rahmen dieser Arbeit gezeigt werden, dass der globale Verlust von Chronophin zu einer vermehrten {\"O}dembildung und einem aggravierten neurologischen Zustand der M{\"a}use im Vergleich zu wildtypischen Kontrollen f{\"u}hrte. Hirnlysate von wildtypischen M{\"a}usen zeigten verringerte Chronophin-Level in der vom Schlaganfall betroffenen Hemisph{\"a}re. Jedoch konnten initiale immunhistochemische und zellbiologische Untersuchungen weder Chronophin-abh{\"a}ngige Ver{\"a}nderungen der Blut-Hirn-Schranke feststellen noch einen zerebralen Zelltyp identifizieren, der f{\"u}r den sch{\"u}tzenden Effekt von Chronophin verantwortlich ist. Diese Ergebnisse weisen auf einen komplexen, vielzelligen Mechanismus hin, dem die sch{\"u}tzende Rolle von Chronophin im isch{\"a}mischen Schlaganfall unterliegt. Die Entschl{\"u}sselung dieses Mechanismus ist Aufgabe k{\"u}nftiger Untersuchungen.}, subject = {Schlaganfall}, language = {de} } @phdthesis{Sun2023, author = {Sun, Aili}, title = {Effect of Tjap1 knock-down on blood-brain barrier properties under normal and hypoxic conditions}, doi = {10.25972/OPUS-34645}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-346450}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2023}, abstract = {Stroke is one of the leading causes of mortality and disability worldwide. The blood-brain barrier (BBB) plays an important role in maintaining brain homeostasis by tightly regulating the exchange of substances between circulating blood and brain parenchyma. BBB disruption is a common pathologic feature of stroke and traumatic brain injury. Understanding the cellular and molecular events that affect the BBB after ischaemic brain injury is important to improve patient prognosis. We have previously shown that microRNA-212/132 is elevated in hypoxic brain microvascular endothelial cells and acts through suppressing the expression of direct microRNA-212/132 target genes with function at the BBB: claudin-1, junctional adhesion molecule 3 (Jam3) and tight-junction associated protein 1 (Tjap1). While the role of claudin-1 and Jam3 at the BBB is well known, the role of Tjap1 is still unclear. The aim of this work was therefore to characterize the role of Tjap1 in brain endothelial cells using a knock-down (KD) approach in established murine in vitro BBB models cEND and cerebEND. Tjap1 KD was established by stable transfection of a plasmid expressing shRNA against Tjap1. The successful downregulation of Tjap1 mRNA and protein was demonstrated by qPCR and Western blot. Tjap1 KD resulted in impaired barrier properties of endothelial cells as shown by lower TEER values and higher paracellular permeability. Interestingly, the Tjap1 KD cells showed lower cell viability and proliferation but migrated faster in a wound healing assay. In the tube formation assay, Tjap1 KD cell lines showed a lower angiogenic potential due to a significantly lower tube length and number as well as a lower amount of branching points in formed capillaries. Tjap1 KD cells showed changes in gene and protein expression. The TJ proteins claudin-5, Jam3 and ZO-1 were significantly increased in Tjap1 KD cell lines, while occludin was strongly decreased. In addition, efflux pump P-glycoprotein was downregulated in Tjap1 KD cells. Oxygen-glucose deprivation (OGD) is a method to mimic stroke in vitro. Brain endothelial cell lines treated with OGD showed lower barrier properties compared to cells cultured under normal condition. These effects were more severe in Tjap1 KD cells, indicating active Tjap1 involvement in the OGD response in brain microvascular endothelial cells. We thus have shown that Tjap1 contributes to a tight barrier of the BBB, regulates cell viability and proliferation of endothelial cells, suppresses their migration and promotes new vessel formation. This means that Tjap1 function is important for mature BBB structure in health and disease.}, subject = {Schlaganfall}, language = {en} } @article{SchuhmannFluri2017, author = {Schuhmann, Michael K. and Fluri, Felix}, title = {Effects of fullerenols on mouse brain microvascular endothelial cells}, series = {International Journal of Molecular Sciences}, volume = {18}, journal = {International Journal of Molecular Sciences}, number = {8}, issn = {1422-0067}, doi = {10.3390/ijms18081783}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-158072}, year = {2017}, abstract = {Fullerenols, water-soluble C60-fullerene derivatives, have been shown to exert neuroprotective effects in vitro and in vivo, most likely due to their capability to scavenge free radicals. However, little is known about the effects of fullerenols on the blood-brain barrier (BBB), especially on cerebral endothelial cells under inflammatory conditions. Here, we investigated whether the treatment of primary mouse brain microvascular endothelial cells with fullerenols impacts basal and inflammatory blood-brain barrier (BBB) properties in vitro. While fullerenols (1, 10, and 100 µg/mL) did not change transendothelial electrical resistance under basal and inflammatory conditions, 100 µg/mL of fullerenol significantly reduced erk1/2 activation and resulted in an activation of NFκB in an inflammatory milieu. Our findings suggest that fullerenols might counteract oxidative stress via the erk1/2 and NFκB pathways, and thus are able to protect microvascular endothelial cells under inflammatory conditions.}, language = {en} }