@phdthesis{Wienen2003, author = {Wienen, Frank}, title = {Kapillarelektrophoretische Trennung und Quantifizierung von Aminoglykosiden und Clotrimazol}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-7796}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Im Rahmen dieser Arbeit wurden kapillarelektrophoretische Methoden entwickelt, mit denen es m{\"o}glich ist, Gentamicinsulfat in Haupt- und Nebenkomponenten zu trennen. Ausgel{\"o}st wurden die Untersuchungen im Jahr 2000, da in den USA {\"u}ber 60 Patienten durch Gentamicin starben. Es wurde vermutet, dass dies auf Verunreinigungen in gewissen Chargen zur{\"u}ckzuf{\"u}hren ist. Gentamicin wird fermentativ aus Micromonospora purpurea gewonnen. Durch leichte Abweichungen im Herstellungsprozess k{\"o}nnen Produkte entstehen, die mit den bisher angewendeten Analysenmethoden nicht nachzuweisen sind. In der momentanen Arzneibuch-Monographie von Gentamicinsulfat wird zur Pr{\"u}fung der verwandten Substanzen eine HPLC-Methode beschrieben, die Gentamicin ohne Derivatisierung mit einem gepulsten amperometrischen Detektor detektiert. Vorteil dieser Methode ist, dass Gentamicin nicht derivatisiert werden muss. Der große Nachteil dieser Methode ist aber, dass die einzelnen Peaks sehr lange Migrationszeiten haben (bis {\"u}ber 10 Minuten) und somit Verunreinigungen {\"u}berdeckt werden k{\"o}nnen. Außerdem sind viele Bestandteile nicht von den Hauptkomponenten abgetrennt. Weiterhin ist diese Methode nicht sehr robust, da der Detektor sehr empfindlich ist. Eigene HPLC-Messungen an mehreren Gentamicin-Chargen zeigten die Probleme auf. Da Gentamicin kein chromophores System hat, kann es nicht mit einem UV/VIS-Detektor detektiert werden. Um dies dennoch zu erm{\"o}glichen, kann Gentamicin mit verschiedenen Reagenzien derivatisiert werden. In der vorliegenden Arbeit wurden alle Aminoglykoside mit ortho-Phthaldialdehyd und 2-Mercaptoessigs{\"a}ure derivatisiert. Somit war eine Detektion bei 330 nm bzw. 340 nm m{\"o}glich. Zur Trennung von Gentamicinsulfat wurde eine spezielle kapillarelektrophoretische Methode entwickelt. Die mizellare elektrokinetische Chromatographie (MEKC) ist nach Derivatisierung in der Lage, nahezu alle in der Monographie beschriebenen aber auch einige nicht aufgef{\"u}hrte Verunreinigungen zu trennen. Die Trennung erfolgt in einer Kieselgelkapillare mit einer Gesamtl{\"a}nge von 33.0 cm, einer effektiven L{\"a}nge von 24.5 cm und einem Innendurchmesser von 50 µm. Als Hintergrundelektrolyt wird ein Natriumtetraborat-Puffer verwendet (100 mM, pH 10.0), zu dem Desoxychols{\"a}ure-Natrium als mizellbildendes Reagenz in einer Konzentration von 20 mM und weiterhin beta-Cyclodextrin in einer Konzentration von 15 mM zugegeben wird. Die Proben werden hydrodynamisch bei 5000 Pa innerhalb 5 Sekunden auf der Anodenseite injiziert. Die Trennung erfolgt bei einer Kapillartemperatur von 25 °C und einer Trennspannung von +12 kV. Pikrins{\"a}ure wird als Interner Standard benutzt. Die Detektion erfolgt UV-spektroskopisch bei 340 nm. Die Hauptpeaks konnten durch „spiken" mit den Einzelkomponenten, die u.a. s{\"a}ulenchromatographisch gewonnen wurden, identifiziert werden. Die vier Hauptkomponenten Gentamicin-C1, C1a, C2 und C2a sind basisliniengetrennt ebenso wie Gentamicin-C2b, die Verunreinigungen Garamin, Desoxystreptamin und Sisomicin. Bei den Untersuchungen von {\"u}ber 40 Gentamicin-Chargen verschiedener Hersteller und H{\"a}ndler fielen sowohl deutliche Unterschiede bez{\"u}glich der einzelnen Gehalte der Hauptkomponenten auf, als auch verschiedene Grade der Verunreinigungen. Anhand der Menge der Verunreinigungen konnten die Chargen in verschiedene Gruppen eingeteilt werden. Die Verunreinigung Sisomicin kann als Leitsubstanz der Verunreinigungen bezeichnet werden, da bei allen st{\"a}rker verunreinigten Chargen Sisomicin in betr{\"a}chtlichen Mengen vorhanden ist. Unter den untersuchten Proben befanden sich auch die Proben, die in den USA die eingangs erw{\"a}hnten Todesf{\"a}lle verursacht haben. Diese Proben konnten der Gruppe der st{\"a}rker verunreinigten Gentamicin-Chargen eindeutig zugewiesen werden. Die Richtigkeit aller Messungen wurde durch 1H-NMR-Messungen best{\"a}tigt. Die Anwendbarkeit der entwickelten MEKC-Methode wurde auch an weiteren Aminoglykosiden untersucht. Die Methode ist ohne {\"A}nderung auf Sisomicin {\"u}bertragbar. Der Sisomicin-Peak ist deutlich abgetrennt vom OPA-Reagenzpeak. Selbst kleine Verunreinigungen der CRS-Substanz k{\"o}nnen mit dieser Methode erkannt werden. Netilmicin und Amikacin k{\"o}nnen nicht ohne {\"A}nderungen mit der Methode vermessen werden, da sie unter diesen Bedingungen mit dem OPA-Peak komigrieren. Eine Anhebung der Trennspannung von +12 kV auf +14 kV lassen die Peaks hervortreten. Eine Unterscheidung der beiden Substanzen ist im Elektropherogramm nicht m{\"o}glich, allerdings k{\"o}nnen sie durch 1H-NMR-spektroskopische Messungen identifiziert und unterschieden werden. Netilmicin wurde in vielen Gentamicin-Proben nachgewiesen. Bei Kanamycin liegen mit dieser Methode im Elektropherogramm sehr viele kleine Peaks sehr nahe beieinander. Durch Absenkung der Kapillartemperatur auf 20 °C k{\"o}nnen diese Peaks etwas besser getrennt werden...}, subject = {Aminoglykoside}, language = {de} } @phdthesis{Wohlfart2022, author = {Wohlfart, Jonas}, title = {Analysis of Drug Impurities by Means of Chromatographic Methods: Targeted and Untargeted Approaches}, doi = {10.25972/OPUS-27387}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-273878}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {The presented works aimed on the analysis of new impurities in APIs and medicinal products. Different subtypes of LC were coupled to suitable detection methods, i.e. UV and various MS techniques, depending on the chemical natures of the analytes and the analytical task. Unexpected impurities in medicinal products and APIs caused several scandals in the past, concomitant with fatalities or severe side effects in human and veterinary patients. The detection of nitrosamines in sartans led to the discovery of nitrosamines in various other drugs, of which the antibiotic rifampicin was analyzed in this work. An examination of the synthesis of rifampicin revealed a high potential for the formation of 4-methyl-1-nitrosopiperazine (MeNP). An LC-MS/HRMS method suitable for the quantification of MeNP was applied in the analysis of drugs collected from Brazil, Comoros, India, Nepal, and Tanzania, where a single dose of rifampicin is used in the post-exposure prophylaxis of leprosy. All batches were contaminated with MeNP, ranging from 0.7-5.1 ppm. However, application of rifampicin containing up to 5 ppm MeNP was recommended by the regulatory authorities for the post-exposure prophylaxis of leprosy. In the 1990s the aminoglycoside antibiotic gentamicin attracted attention after causing fatalities in the USA, but the causative agent was never identified unequivocally. The related substance sisomicin was recognized as a lead impurity by the Holzgrabe lab at the University of W{\"u}rzburg: sisomicin was accompanied by a variety of other impurities and batches containing sisomicin had caused the fatalities. In 2016, anaphylactic reactions were reported after application of gentamicin. A contamination of the medicinal products with histamine, an impurity of the raw material fish peptone used upon the production, could be identified as the cause of the adverse effects. Batches of gentamicin sulfate, which had been stored at the University of W{\"u}rzburg since the earlier investigations, were analyzed regarding their contamination with histamine to determine whether the biogenic amine was responsible for the 1990s fatalities as well. Furthermore, a correlation with the lead impurity sisomicin was checked. Histamine could be detected in all analyzed batches, but at a lower level than in the batches responsible for the anaphylactic reactions. Moreover, there is no correlation of histamine with the lead impurity sisomicin. Hence, the causative agent for the 1990s fatalities was not histamine and remains unknown. Another source of impurities is the reaction of APIs with excipients, e.g. the esterification of naproxen with PEG 600 in soft gel capsules. The influence of the formulation's composition on this reaction was investigated by means of LC-UV. Therefore, the impurity naproxen-PEG-ester (NPEG) was synthesized and used for the development of a method suitable for the analysis of soft gel capsule formulations. Different formulations were stressed for 7 d at 60 °C and the relative amount of NPEG was determined. The formation of NPEG was influenced by the concentrations of water and lactic acid, the pH, and the drug load of the formulation, which can easily be explained by the chemistry behind esterification reactions. Keeping in mind the huge variety of sources of impurities, it might be impossible to predict all potential impurities of a drug substance/product. Targeted and untargeted approaches were combined in the impurity profiling of bisoprolol fumarate. Eight versions of an LC-HRMS method were developed to enable the detection of a maximum number of impurities: an acidic and a basic buffered LC was coupled to MS detection applying ESI and APCI, both in positive in negative mode. MS and MS/MS data were acquired simultaneously by information dependent acquisition. In the targeted approach, potential impurities were derived from a reaction matrix based on the synthesis route of the API, while the untargeted part was based on general unknown comparative screening to identify additional signals. 18 and 17 impurities were detected in the targeted and the untargeted approach, respectively. The molecular formulae were assessed based on the exact mass and the isotope pattern. Theoretical fragment spectra generated by in silico fragmentation were matched with experimental data to estimate the plausibility of proposed/elucidated structures. Moreover, the detected impurities were quantified with respect to an internal standard.}, subject = {LC-MS}, language = {en} }