@unpublished{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, journal = {Physical Chemistry Chemical Physics}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159656}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @article{HocheSchmittHumeniuketal.2017, author = {Hoche, Joscha and Schmitt, Hans-Christian and Humeniuk, Alexander and Fischer, Ingo and Mitrić, Roland and R{\"o}hr, Merle I. S.}, title = {The mechanism of excimer formation: an experimental and theoretical study on the pyrene dimer}, series = {Physical Chemistry Chemical Physics}, volume = {19}, journal = {Physical Chemistry Chemical Physics}, number = {36}, doi = {10.1039/C7CP03990E}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-159514}, pages = {25002-25015}, year = {2017}, abstract = {The understanding of excimer formation in organic materials is of fundamental importance, since excimers profoundly influence their functional performance in applications such as light-harvesting, photovoltaics or organic electronics. We present a joint experimental and theoretical study of the ultrafast dynamics of excimer formation in the pyrene dimer in a supersonic jet, which is the archetype of an excimer forming system. We perform simulations of the nonadiabatic photodynamics in the frame of TDDFT that reveal two distinct excimer formation pathways in the gas-phase dimer. The first pathway involves local excited state relaxation close to the initial Franck-Condon geometry that is characterized by a strong excitation of the stacking coordinate exhibiting damped oscillations with a period of 350 fs that persist for several picoseconds. The second excimer forming pathway involves large amplitude oscillations along the parallel shift coordinate with a period of ≈900 fs that after intramolecular vibrational energy redistribution leads to the formation of a perfectly stacked dimer. The electronic relaxation within the excitonic manifold is mediated by the presence of intermolecular conical intersections formed between fully delocalized excitonic states. Such conical intersections may generally arise in stacked π-conjugated aggregates due to the interplay between the long-range and short-range electronic coupling. The simulations are supported by picosecond photoionization experiments in a supersonic jet that provide a time-constant for the excimer formation of around 6-7 ps, in good agreement with theory. Finally, in order to explore how the crystal environment influences the excimer formation dynamics we perform large scale QM/MM nonadiabatic dynamics simulations on a pyrene crystal in the framework of the long-range corrected tight-binding TDDFT. In contrast to the isolated dimer, the excimer formation in the crystal follows a single reaction pathway in which the initially excited parallel slip motion is strongly damped by the interaction with the surrounding molecules leading to the slow excimer stabilization on a picosecond time scale.}, language = {en} } @phdthesis{Mann2015, author = {Mann, Christoph}, title = {Exzitonengr{\"o}ße und -dynamik in (6,5)-Kohlenstoffnanor{\"o}hren : Transiente Absorptions- und Photolumineszenzmessungen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-116712}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Zahlreiche theoretische und experimentelle Untersuchungen haben erwiesen, dass in halbleitenden Kohlenstoffnanor{\"o}hren durch Absorption von Licht haupts{\"a}chlich Exzitonen erzeugt werden. Die photophysikalischen Eigenschaften und insbesondere die Prozesse nach der optischen Anregung sind aber gegenw{\"a}rtig noch nicht vollst{\"a}ndig verstanden. Zeitaufgel{\"o}ste Spektroskopie bietet die M{\"o}glichkeit, diese Prozesse zu verfolgen und somit detaillierten Einblick in das photophysikalische Verhalten von Kohlenstoffnanor{\"o}hren zu nehmen. Hierbei scheinen auch extrinsische Faktoren - zu nennen sind die Herstellungsmethode, die Art der Probenpr{\"a}paration, der Aggregationsgrad sowie der durch das L{\"o}sungs- bzw. Dispersionsmittel bedingte Einfluss - eine entscheidende Rolle zu spielen. In dieser Dissertation wurden die Exzitonengr{\"o}ße sowie die exzitonische Dynamik in einwandigen Kohlenstoffnanor{\"o}hren mittels transienter Absorptionsspektroskopie sowie station{\"a}rer und zeitaufgel{\"o}ster Photolumineszenzmessungen untersucht. Alle Experimente fanden dabei an halbleitenden (6,5)-Kohlenstoffnanor{\"o}hren statt, deren chirale Anreicherung durch Dichtegradientenultrazentrifugation gelang. F{\"u}r die temperaturabh{\"a}ngigen Messungen wurde ein Verfahren zur Herstellung von tensidstabilisierten Gelatinefilmen entwickelt. Diese zeichnen sich durch eine hohe Temperaturstabilit{\"a}t bei gleichzeitiger Minimierung von Streulichteffekten aus. Die Bestimmung der Exzitonengr{\"o}ße erfolgte mit Hilfe des Phasenraumf{\"u}llmodells, das die intensit{\"a}tsabh{\"a}ngige {\"A}nderung der Oszillatorst{\"a}rke eines {\"U}bergangs mit der Exzitonengr{\"o}ße verkn{\"u}pft. Hierf{\"u}r wurden leistungsabh{\"a}ngige Messungen der transienten Absorption durchgef{\"u}hrt und die Signalintensit{\"a}t des Photobleichens gegen die absorbierte Photonenflussdichte aufgetragen. Da diese beiden Gr{\"o}ßen nur bei geringer Exzitonendichte in einer linearen Beziehung stehen, aus der sich die Exzitonengr{\"o}ße berechnen l{\"a}sst, wurde im Experiment besonderer Wert auf niedrige Anregungsfluenzen und deren exakte Bestimmung gelegt. Um den Einfluss der Aggregation quantifizieren zu k{\"o}nnen und den Vergleich mit der Literatur zu erleichtern, fanden die Untersuchungen sowohl an individualisierten als auch an aggregierten R{\"o}hrenproben statt. Die Datenanalyse, bei der erstmalig die stimulierte Emission sowie der spektrale {\"U}berlapp von Photoabsorptions- und Photobleichbande Ber{\"u}cksichtigung fanden, ergab f{\"u}r individualisierte (6,5)-Nanor{\"o}hren einen Wert von 12.0 nm f{\"u}r die Gr{\"o}ße des S1-Exzitons, w{\"a}hrend diese bei der aggregierten R{\"o}hrenprobe nur 5.6 nm betr{\"a}gt. Die Probenabh{\"a}ngigkeit der Exzitonengr{\"o}ße macht den Vergleich mit anderen experimentell ermittelten Werten schwierig. Diese liegen fast ausschließlich zwischen 1 nm und 4.5 nm, ihre Bestimmung fand aber teilweise an stark aggregierten bzw. polydispersen Proben statt. Theoretische Berechnungen liefern f{\"u}r die Exzitonengr{\"o}ße Werte zwischen 1 nm und 4 nm. Zwar gelten einige der Berechnungen f{\"u}r Vakuum, was verglichen zu einer experimentell in L{\"o}sung bzw. im Film bestimmten Exzitonengr{\"o}ße einen kleineren Wert mit sich bringt, jedoch kann allein hierdurch die Diskrepanz zu der in dieser Arbeit ermittelten Exzitonengr{\"o}ße von 12.0 nm nicht erkl{\"a}rt werden. Setzt man experimentell und theoretisch f{\"u}r Vakuum bestimmte Werte f{\"u}r die Exzitonengr{\"o}ße und die Bindungsenergie in einen einfachen Zusammenhang, entspricht eine Exzitonengr{\"o}ße von 12.0 nm einer Bindungsenergie zwischen 0.21 eV und 0.27 eV. Die mittels Zweiphotonenexperimenten ermittelten Werte f{\"u}r die Bindungsenergie von (6,5)-Kohlenstoffnanor{\"o}hren befinden sich zwischen 0.37 eV und 0.42 eV; diese wurden allerdings unter Zuhilfenahme eines vereinfachten zylindrischen Modells abgesch{\"a}tzt. Weitere experimentelle und theoretische Untersuchungen k{\"o}nnten kl{\"a}ren, inwieweit eine exzitonische Bindungsenergie zwischen 0.21 eV und 0.27 eV f{\"u}r (6,5)-SWNTs in Betracht kommt. Strahlender und nichtstrahlender Zerfall in den Grundzustand scheinen in (6,5)-Kohlenstoffnanor{\"o}hren durch eine Dynamik zwischen verschiedenen Zust{\"a}nden sowie durch die Diffusion der Exzitonen beeinflusst zu werden. Um diese f{\"u}r die Rekombination maßgeblichen Prozesse besser zu verstehen, wurden temperaturabh{\"a}ngige Messungen der station{\"a}ren und zeitaufgel{\"o}sten Photolumineszenz sowie der transienten Absorption durchgef{\"u}hrt. Die Ergebnisse der station{\"a}ren PL-Experimente deuten darauf hin, dass die Exzitonen zwischen dem optisch aktiven Singulettzustand mit A2-Symmetrie - im Folgenden mit [B] bezeichnet - und einem energetisch tiefer liegenden dunklen Zustand [D] gestreut werden. Mit einem Wert von 5 meV f{\"u}r die energetische Aufspaltung zwischen [B] und [D] gelingt eine gute Anpassung an die Daten, was mit Blick auf die Bandstruktur von (6,5)-SWNTs vermuten l{\"a}sst, dass es sich bei [D] um den A1-Singulettzustand handelt. Außerdem scheint eine nichtthermische Verteilung der Exzitonen auf [B] und [D] vorzuliegen, wobei strahlende Rekombination nur vom Zustand [B] aus m{\"o}glich ist. Mit diesen Annahmen kann das temperaturabh{\"a}ngige Verhalten der station{\"a}ren Photolumineszenz modelliert werden, die Ergebnisse der zeitaufgel{\"o}sten PL-Messungen jedoch nicht. Mit einem rein diffusionsdominierten Modell gelingt dies ebenso wenig, so dass zur Interpretation des PL-Zerfalls vermutlich ein Modell entwickelt werden muss, in dem sowohl die Streuung der Exzitonen zwischen [B] und [D] als auch das durch Diffusion bedingte L{\"o}schen an Defektstellen oder R{\"o}hrenenden Ber{\"u}cksichtigung findet. Die Bedeutung der Diffusion von Exzitonen zu Defektstellen oder R{\"o}hrenenden, an denen bevorzugt nichtstrahlender Zerfall stattfindet, kann durch spektral- und zeitaufgel{\"o}ste PL-Messungen belegt werden. Abh{\"a}ngig von der zur Verf{\"u}gung stehenden thermischen Energie und der H{\"o}he der Potenzialbarrieren des untersuchten Systems kann die Diffusion niederenergetischer Exzitonen, die sich in Potenzialminima befinden, soweit eingeschr{\"a}nkt werden, dass diese eine fast bis um den Faktor zwei l{\"a}ngere PL-Lebensdauer aufweisen als h{\"o}herenergetische Exzitonen. Das unterschiedliche Verhalten von transienter Absorption und zeitaufgel{\"o}ster Photolumineszenz bei Temperaturen zwischen 14 K und 35 K zeigt, dass die Repopulation des Grundzustands haupts{\"a}chlich von einem anderen Zustand aus erfolgt als die strahlende Rekombination. Ob es sich hierbei aber um den mit [D] bezeichneten A1-Singulettzustand oder einen anderen dunklen Zustand handelt, kann nicht abschließend gekl{\"a}rt werden. Aufgrund inhomogener Verbreiterung stellt die Halbwertsbreite der Banden im Absorptionsspektrum ein Maß f{\"u}r die H{\"o}he der Potenzialbarrieren bzw. f{\"u}r die energetische Verteilung der Exzitonen im angeregten Zustand dar. In dieser Arbeit wurde anhand vier verschiedener Nanorohrsuspensionen gezeigt, dass S{\"a}ttigungsverhalten der transienten Absorption von (6,5)-Kohlenstoffnanor{\"o}hren und Bandenbreite im Absorptionsspektrum demselben Trend folgen. Begr{\"u}nden kann man dies damit, dass das S{\"a}ttigungsverhalten der transienten Absorption durch Exziton-Exziton-Annihilation bestimmt wird. Aufgrund ihrer eindimensionalen Struktur unterliegen Kohlenstoffnanor{\"o}hren einer starken Beeinflussung durch die Umgebung. Abh{\"a}ngig vom L{\"o}sungs- bzw. Dispersionsmittel resultiert eine unterschiedliche inhomogene Verbreiterung der Absorptionsbanden und damit unterschiedlich hohe Potenzialbarrieren im angeregten Zustand. Niedrige Potenzialbarrieren erlauben eine weitreichende Diffusion der Exzitonen, sodass effiziente Exziton-Exziton-Annihilation schon bei einer vergleichsweise geringen Exzitonendichte stattfindet und das Signal der transienten Absorption bei einer niedrigen Impulsfluenz s{\"a}ttigt.}, subject = {Exziton}, language = {de} } @phdthesis{Kaufmann2019, author = {Kaufmann, Christina}, title = {Discrete Supramolecular Architectures of Bay-linked Perylene Bisimide Dimers by Self-Assembly and Folding}, doi = {10.25972/OPUS-17300}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-173005}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2019}, abstract = {Supramolecular self-assembly of perylene bisimide (PBI) dyes via non-covalent forces gives rise to a high number of different PBI architectures with unique optical and functional properties. As these properties can be drastically influenced by only slightly structural changes of the formed supramolecular ensembles (Chapter 2.1) the controlled self-assembly of PBI dyes became a central point of current research to design innovative materials with a high potential for different applications as for example in the fields of organic electronics or photovoltaics. As PBI dyes show a strong tendency to form infinite aggregated structures (Chapter 2.2) the aim of this thesis was to precisely control their self-assembly to create small, structurally well-defined PBI assemblies in solution. Chapter 2.3 provides an overview on literature known strategies that were established to realize this aim. It could be demonstrated that especially backbone-directed intra- and intermolecular self-assembly of covalently linked Bis-PBI dyes evolved as one of the most used strategies to define the number of stacked PBI chromophores by using careful designed spacer units with regard to their length and flexibility. By using conventional spectroscopic methods like UV/Vis and fluorescence experiments in combination with NMR measurements an in-depth comparison of the molecular and optical properties in solution both in the non-stacked and aggregated state of the target compounds could be elucidated to reveal structure-property relationships of different PBI architectures. Thus, it could be demonstrated, that spacer units that pre-organize two PBI chromophores with an inter-planar distance of r < 7 {\AA} lead to an intramolecular folding, whereas linker moieties with a length between 7 to 11 {\AA} result in an intermolecular self-assembly of the respective Bis-PBIs dyes via dimerization to form well-defined quadruple PBI pi-stacks. Hence, if the used spacer units ensure an inter-planar distance r > 14 {\AA} larger oligomeric PBI pi-stacks are generated. In Chapter 4 a detailed analysis of the exciton coupling in a highly defined H-aggregate quadruple PBI pi-stack is presented. Therefore, bay-tethered PBI dye Bis-PBI 1 was investigated by concentration-dependent UV/Vis spectroscopy in THF and toluene as well as by 2D-DOSY-NMR spectroscopy, ESI mass spectrometry and AFM measurements confirming that Bis-PBI 1 self-assembles exclusively into dimers with four closely pi-stacked PBI chromophores. Furthermore, with the aid of broadband fluorescence upconversion spectroscopy (FLUPS) ensuring broadband detection range and ultrafast time resolution at once, ultrafast Frenkel exciton relaxation and excimer formation dynamics in the PBI quadruple pi-stack within 1 ps was successfully investigated in cooperation with the group of Dongho Kim. Thus, it was possible to gain for the first time insights into the exciton dynamics within a highly defined synthetic dye aggregate beyond dimers. By analysing the vibronic line shape in the early-time transient fluorescence spectra in detail, it could be demonstrated that the Frenkel exciton is entirely delocalized along the quadruple stack after photoexcitation and immediately loses its coherence followed by the formation of the excimer state. In Chapter 5 four well-defined Bis-PBI folda-dimers Bis-PBIs 2-4 were introduced, where linker units of different length (r < 7 {\AA}) and steric demand were used to gain distinct PBI dye assemblies in the folded state. Structural elucidation based on in-depth UV/Vis, CD and fluorescence experiments in combination with 1D and 2D NMR studies reveals a stacking of the two PBI chromophores upon folding, where geometry-optimized structures obtained from DFT calculations suggest only slightly different arrangements of the PBI units enforced by the distinct spacer moieties. With the resulting optical signatures of Bis-PBIs 2-4 ranging from conventional Hj-type to monomer like absorption features, the first experimental proof of a PBI-based "null-aggregate" could be presented, in which long- and short-range exciton coupling fully compensate each other. Hence, the insights of this chapter pinpoint the importance of charge-transfer mediated short-range exciton coupling that can significantly influence the properties of pi-stacked PBI chromophores In the last part of this thesis (Chapter 6), spacer-controlled self-assembly of four bay-linked Bis-PBI dyes Bis-PBIs 5-8 into well-defined supramolecular architectures was investigated, where the final aggregate structures are substantially defined by the nature of the used spacer units. By systematically extending the backbone length from 7 to 15 {\AA} defining the inter-planar distance between the tethered chromophores, different assemblies from defined quadruple PBI pi-stacks to larger oligomeric pi-stacks could be gained upon aggregation. In conclusion, the synthesis of nine covalently linked PBI dyes in combination with a detailed investigation of their spacer-mediated self-assembly behaviour in solution concerning structure-properties-relationships was presented within this thesis. The results confirm a strong exciton coupling in different types of Bis-PBI architectures e.g. folda-dimers or highly defined quadruple pi-stacks, which significantly influences their optical properties upon self-assembly.}, subject = {Supramolekulare Chemie}, language = {en} }