@article{VendelovaAshourBlanketal.2018, author = {Vendelova, Emilia and Ashour, Diyaaeldin and Blank, Patrick and Erhard, Florian and Saliba, Antoine-Emmanuel and Kalinke, Ulrich and Lutz, Manfred B.}, title = {Tolerogenic transcriptional signatures of steady-state and pathogen-induced dendritic cells}, series = {Frontiers in Immunology}, volume = {9}, journal = {Frontiers in Immunology}, number = {333}, doi = {10.3389/fimmu.2018.00333}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-175636}, year = {2018}, abstract = {Dendritic cells (DCs) are key directors of tolerogenic and immunogenic immune responses. During the steady state, DCs maintain T cell tolerance to self-antigens by multiple mechanisms including inducing anergy, deletion, and Treg activity. All of these mechanisms help to prevent autoimmune diseases or other hyperreactivities. Different DC subsets contribute to pathogen recognition by expression of different subsets of pattern recognition receptors, including Toll-like receptors or C-type lectins. In addition to the triggering of immune responses in infected hosts, most pathogens have evolved mechanisms for evasion of targeted responses. One such strategy is characterized by adopting the host's T cell tolerance mechanisms. Understanding these tolerogenic mechanisms is of utmost importance for therapeutic approaches to treat immune pathologies, tumors and infections. Transcriptional profiling has developed into a potent tool for DC subset identification. Here, we review and compile pathogen-induced tolerogenic transcriptional signatures from mRNA profiling data of currently available bacterial- or helminth-induced transcriptional signatures. We compare them with signatures of tolerogenic steady-state DC subtypes to identify common and divergent strategies of pathogen induced immune evasion. Candidate molecules are discussed in detail. Our analysis provides further insights into tolerogenic DC signatures and their exploitation by different pathogens.}, language = {en} } @misc{TortMitrevaBrehmetal.2020, author = {Tort, Jose F. and Mitreva, Makedonka and Brehm, Klaus R. and Rinaldi, Gabriel}, title = {Editorial: Novel Frontiers in Helminth Genomics}, series = {Frontiers in Genetics}, volume = {11}, journal = {Frontiers in Genetics}, number = {791}, issn = {1664-8021}, doi = {10.3389/fgene.2020.00791}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-210209}, year = {2020}, abstract = {No abstract available.}, language = {en} } @article{NtoukasTappePfuetzeetal.2013, author = {Ntoukas, Vasileios and Tappe, Dennis and Pf{\"u}tze, Daniel and Simon, Michaela and Holzmann, Thomas}, title = {Cerebellar Cysticercosis Caused by Larval Taenia crassiceps Tapeworm in Immunocompetent Woman, Germany}, series = {Emerging Infectious Diseases}, volume = {19}, journal = {Emerging Infectious Diseases}, number = {12}, doi = {10.3201/eid1912.130284}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-131686}, pages = {2008-2011}, year = {2013}, abstract = {Human cysticercosis caused by Taenia crassiceps tapeworm larvae involves the muscles and subcutis mostly in immunocompromised patients and the eye in immunocompetent persons. We report a successfully treated cerebellar infection in an immunocompetent woman. We developed serologic tests, and the parasite was identified by histologic examination and 12s rDNA PCR and sequencing.}, language = {en} }