@phdthesis{Goetz2018, author = {G{\"o}tz, Silvia}, title = {Zuo1 - ein neues G-Quadruplex-bindendes Protein in \(Saccharomyces\) \(cerevisiae\)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-152158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2018}, abstract = {G-Quadruplex (G4)-Strukturen sind sehr stabile und polymorphe DNA und RNA Sekund{\"a}rstrukturen mit einem konservierten Guanin-reichen Sequenzmotiv (G4-Motiv). Sie bestehen aus {\"u}bereinander gestapelten planaren G-Quartetts, in denen je vier Guanine durch Wasserstoffbr{\"u}ckenbindungen zusammengehalten werden. Da G4-Motive in Eukaryoten an bestimmten Stellen im Genom angereichert vorkommen, wird angenommen, dass die Funktion von G4-Strukturen darin besteht, biologische Prozesse positiv oder negativ zu regulieren. Aufgrund der hohen thermodynamischen Stabilit{\"a}t von G4 Strukturen ist davon auszugehen, dass Proteine in die Faltung, Stabilisierung und Entfaltung dieser Nukleins{\"a}ure-Strukturen regulatorisch involviert sind. Bis heute wurden viele Proteine in der Literatur beschrieben, die G4-Strukturen entwinden k{\"o}nnen. Jedoch konnten bisher nur wenige Proteine identifiziert werden, die in vivo die Faltung f{\"o}rdern oder G4-Strukturen stabilisieren. Durch Yeast One-Hybrid (Y1H)-Screenings habe ich Zuo1 als neues G4 bindendes Protein identifiziert. In vitro Analysen best{\"a}tigten diese Interaktion und es stellte sich heraus, dass Zuo1 G4-Strukturen stabilisiert. {\"U}bereinstimmend mit den in vitro Daten konnte gezeigt werden, dass Zuo1 signifikant an G4-Motive im Genom von Saccharomyces ceresivisiae bindet. Genomweit {\"u}berlappen G4-Motive, an die Zuo1 bindet, mit Stellen, an denen die DNA Replikation zum Stillstand kommt und vermehrt DNA Sch{\"a}den vorkommen. Diese Ergebnisse legen nahe, dass Zuo1 eine Funktion w{\"a}hrend der DNA Reparatur oder in Zusammenhang mit dem Vorankommen der DNA Replikationsgabel hat, indem G4-Strukturen stabilisiert werden. Diese Hypothese wird außerdem durch genetische Experimente gest{\"u}tzt, wonach in Abwesenheit von Zuo1 die Genominstabilit{\"a}t zunimmt. Aufgrund dieser Daten war es m{\"o}glich ein Model zu entwickeln, bei dem Zuo1 w{\"a}hrend der S-Phase G4-Strukturen bindet und stabilisiert wodurch die DNA Replikation blockiert wird. Diese Interaktion findet neben Stellen schadhafter DNA statt und unterst{\"u}tzt somit DNA Reparatur-Prozesse wie beispielsweise die Nukleotidexzisionsreparatur. Als weiteres potentielles G4-bindendes Protein wurde Slx9 in Y1H-Screenings identifiziert. In vitro Experimente zeigten zwar, dass Slx9 mit h{\"o}herer Affinit{\"a}t an G4-Strukturen bindet im Vergleich zu anderen getesteten DNA Konformationen, jedoch wurde in S. cerevisiae genomweit keine signifikante Bindung an G4-Motive festgestellt.}, subject = {Saccharomyces cerevisiae}, language = {de} } @phdthesis{Schnabel2009, author = {Schnabel, Katrin Anne}, title = {Validit{\"a}t tissue-microarray-basierter Immunph{\"a}notypisierung bei Hodgkin-Lymphomen}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-48158}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Die histologische Technik der Tissue-Microarrays ist eine sehr effiziente Methode, um eine große Anzahl auch heterogener Lymphome wie des Hodgkin-Lymphoms bei hohem Durchsatz unter homogenen F{\"a}rbebedingungen zu untersuchen. Die vorliegende Arbeit konnte zeigen, dass ein Probeschnitt zur vorherigen Auswahl stanzw{\"u}rdigen Tumorareals nicht n{\"o}tig ist. Die so genannte Blindstanzung trug weniger als einen Prozentpunkt (0,9\%) zum Verlust der auswertbaren F{\"a}lle bei. Dennoch war bei einzelnen Parametern (LMP1 und EBER) ein hoher Gewebeverlust zu beobachten. In einer Stichprobe von 2696 Stanzen waren es 24\% (631 Stanzen) bedingt durch die F{\"a}rbetechnik, aber auch durch unterschiedliche Vorbehandlungen und Originalfixationen des Probematerials. In dieser Studie wurden 1212 F{\"a}lle zur Immuntypisierung von Tumorzellen des klassischen und nodul{\"a}r lymphozyten-pr{\"a}dominanten Hodgkin-Lymphoms untersucht. Die F{\"a}lle von c-HL wiesen eine h{\"a}ufige Expression von CD30- und CD15-Oberfl{\"a}chenmarkern und kaum B-Zell-Marker auf, w{\"a}hrend im NLP-HL die Expression in umgekehrter H{\"a}ufigkeit vorlag. Diese bisher gr{\"o}ßte Untersuchung von T-Zell-Markern an H-/RS-Zellen, erstmalig auch an NLP-HL, ergab eine bis zu 6-fach h{\"o}here Frequenz in der NLP-HL bei h{\"a}ufigerer B-Zell-Marker-Expression. Die in der Literatur beschriebene Rangordnung der Expressionsh{\"a}ufigkeit von Oberfl{\"a}chenantigenen im c-HL (CD2 > CD4 > CD3 > CD5 > CD8) wurde best{\"a}tigt und wich nur in den Markern CD3 und CD5 ab: Perforin >> CD4 > CD5 > CD3 > CD8 > GranzymB > TIA-1 > CD7. Tzankov et al. [45] fanden in ihrer Untersuchung mit 259 c-HL-F{\"a}llen eine H{\"a}ufigkeit von 5\% T-Zell-Marker-Expression. Die vorliegende Arbeit mit 1147 untersuchten c-HL-F{\"a}llen kam zum Ergebnis einer deutlich h{\"o}heren T-Zell-Marker-Expressionsh{\"a}ufigkeit von 20,1\%. Der pathophysiologische Mechanismus der T-Zell-Marker-Expression ist bis heute noch unklar, k{\"o}nnte aber als eine alternative Signalkaskade zur Aufrechterhaltung des Zellzyklus unter ge{\"a}ndertem Zellmilieu gedeutet werden. Ein weiterer Fokus dieser Arbeit betraf die Gruppe der Studienteilnehmer 60 Jahre und {\"a}lter, um Hinweisen auf das „age-related" EBV-associated Lymphom und der Rolle der Mikrosatelliten-Instabilit{\"a}t nachzugehen. So fand sich eine signifikante H{\"a}ufung von Markern f{\"u}r eine EBV-Infektion (EBER, LMP1) in der Gruppe der {\"u}ber 60-J{\"a}hrigen. Die Expression von DNA-Reparaturenzymen, deren Ausbleiben auf Mikrosatelliten-Instabilit{\"a}t gedeutet h{\"a}tte, unterschied sich zwischen j{\"u}ngeren und {\"a}lteren Studienteilnehmern nicht.}, subject = {Lymphogranulomatose}, language = {de} } @phdthesis{Schoenwetter2021, author = {Sch{\"o}nwetter, Elisabeth Sofie}, title = {Towards an understanding of the intricate interaction network of TFIIH}, doi = {10.25972/OPUS-16892}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-168926}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2021}, abstract = {The integrity of its DNA is fundamental for every living cell. However, DNA is constantly threatened by exogenous and endogenous damaging agents that can cause a variety of different DNA lesions. The severe consequences of an accumulation of DNA lesions are reflected in cancerogenesis and aging. Several DNA repair mechanisms ensure the repair of DNA lesions and thus maintain DNA integrity. One of these DNA repair mechanisms is nucleotide excision repair (NER), which is famous for its ability to address a large variety of structurally unrelated DNA lesions. A key component of eukaryotic NER is the transcription factor II H (TFIIH) complex, which is not only essential for DNA repair but also for transcription. The TFIIH complex is composed of ten subunits. How these subunits work together during NER to unwind the DNA around the lesion is, however, not yet fully understood. High-resolution structural data and biochemical insights into the function of every subunit are thus indispensable to understand the functional networks within TFIIH. The importance of an intact TFIIH complex is reflected in the severe consequences of patient mutations in the TFIIH subunits XPB, XPD or p8 leading to the hallmark diseases xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Defects in the NER pathway are further associated with several types of cancer including skin cancer. The herein described work focused on five TFIIH subunits derived from the thermophilic fungus Chaetomium thermophilum, the p34/p44 pair and the ternary XPB/p52/p8 complex. The interaction between p34 and p44 was characterized based on a high-resolution structure of the p34_vWA/p44_RING minimal complex. Biochemical studies of the p34/p44 interaction led to the disclosure of an additional interaction between the p34 and p44 subunits, which had not been characterized so far. The p34/p44 interaction was shown to be central to TFIIH, which justifies the presence of several redundant interfaces to safeguard the interaction between the two proteins and might explain why so far, no patient mutations in these subunits have been identified. The p52 subunit of TFIIH was known to be crucial to stimulate the ATPase activity of XPB, which is required during NER. This work presents the first entire atomic resolution structural characterization of p52, which was derived of several crystal structures of p52 variants and a p52/p8 variant thereby demonstrating the interaction between p52 and p8. The precise structural model of p52 offered the possibility to investigate interactions with other TFIIH subunits in more detail. The middle domain 2 of p52 and the N-terminal domain of XPB were shown to mediate the main interaction between the two subunits. An analysis of the p52 crystal structures within recently published cryo-electron microscopy structures of TFIIH provides a model of how p52 and p8 stimulate the ATPase activity of XPB, which is essential for NER and transcription. The structural and biochemical findings of this work provide an additional building block towards the uncovering of the architecture and function of this essential transcription factor.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Wanzek2016, author = {Wanzek, Katharina}, title = {The investigation of the function of repair proteins at G-quadruplex structures in \(Saccharomyces\) \(cerevisiae\) revealed that Mms1 promotes genome stability}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142547}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2016}, abstract = {G-quadruplex structures are highly stable alternative DNA structures that can, when not properly regulated, impede replication fork progression and cause genome instability (Castillo Bosch et al, 2014; Crabbe et al, 2004; Koole et al, 2014; Kruisselbrink et al, 2008; London et al, 2008; Lopes et al, 2011; Paeschke et al, 2013; Paeschke et al, 2011; Piazza et al, 2015; Piazza et al, 2010; Piazza et al, 2012; Ribeyre et al, 2009; Sabouri et al, 2014; Sarkies et al, 2012; Sarkies et al, 2010; Schiavone et al, 2014; Wu \& Spies, 2016; Zimmer et al, 2016). The aim of this thesis was to identify novel G-quadruplex interacting proteins in Saccharomyces cerevisiae and to unravel their regulatory function at these structures to maintain genome integrity. Mms1 and Rtt101 were identified as G-quadruplex binding proteins in vitro via a pull-down experiment with subsequent mass spectrometry analysis. Rtt101, Mms1 and Mms22, which are all components of an ubiquitin ligase (Rtt101Mms1/Mms22), are important for the progression of the replication fork following fork stalling (Luke et al, 2006; Vaisica et al, 2011; Zaidi et al, 2008). The in vivo binding of endogenously tagged Mms1 to its target regions was analyzed genome-wide using chromatin-immunoprecipitation followed by deep-sequencing. Interestingly, Mms1 bound independently of Mms22 and Rtt101 to G-rich regions that have the potential to form G-quadruplex structures. In vitro, formation of G-quadruplex structures could be shown for the G-rich regions Mms1 bound to. This binding was observed throughout the cell cycle. Furthermore, the deletion of MMS1 caused replication fork stalling as evidenced by increased association of DNA Polymerase 2 at Mms1 dependent sites. A gross chromosomal rearrangement assay revealed that deletion of MMS1 results in a significantly increased genome instability at G-quadruplex motifs compared to G-rich or non-G-rich regions. Additionally, binding of the helicase Pif1, which unwinds G4 structures in vitro (Paeschke et al, 2013; Ribeyre et al, 2009; Sanders, 2010; Wallgren et al, 2016), to Mms1 binding sites was reduced in mms1 cells. The data presented in this thesis, together with published data, suggests a novel mechanistic model in which Mms1 binds to G-quadruplex structures and enables Pif1 association. This allows for replication fork progression and genome integrity.}, subject = {Quadruplex-DNS}, language = {en} } @phdthesis{Rohleder2014, author = {Rohleder, Florian}, title = {The Intricate Network of Replication-dependent Interstrand Crosslink DNA Repair}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-113121}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2014}, abstract = {The Fanconi anemia (FA) pathway is a replication-dependent DNA repair mechanism which is essential for the removal of interstrand crosslink (ICL) DNA damages in higher eukaryotes (Moldovan and D'Andrea, 2009). Malfunctions in this highly regulated repair network lead to genome instability (Deans and West, 2011). Pathological phenotypes of the disease FA which is caused by mutations in the eponymous pathway are very heterogeneous, involving congenital abnormalities, bone-marrow failure, cancer predisposition and infertility (Auerbach, 2009). The FA pathway comprises a complex interaction network and to date 16 FA complementation groups and associated factors have been identified (Kottemann and Smogorzewska, 2013). Additionally, components of nucleotide excision repair (NER), homologous recombination repair (HRR), and translesion synthesis (TLS) are involved and coordinated by the FA proteins (Niedzwiedz et al., 2004; Knipscheer et al., 2009). One of the FA proteins is the DEAH helicase FANCM. In complex with its binding partners FAAP24 and MHF1/2 it binds the stalled replication fork and activates the FA damage response (Wang et al., 2013). However, the exact steps towards removal of the ICL damage still remain elusive. To decipher the underlying process of FA initiation by FANCM, this thesis mainly focuses on the archaeal FANCM homolog helicase-associated endonuclease for fork-structured DNA (Hef). Hef from the archaeal organism Thermoplasma acidophilum (taHef) differs from other archaeal Hef proteins and exclusively comprises an N-terminal helicase entity with two RecA and a thumb-like domain while others additionally contain a nuclease portion at the C-terminus. I solved the crystal structure of full-length taHef at a resolution of 2.43 {\AA}. In contrast to the crystal structure of the helicase domain of Hef from Pyrococcus furiosus (pfHef), taHef exhibits an extremely open conformation (Nishino et al., 2005b) which implies that a domain movement of the RecA-like helicase motor domains of 61° is possible thus highlighting the flexibility of helicases which is required to translocate along the DNA. However, small-angle x-ray scattering (SAXS) measurements confirm an intermediate conformation of taHef in solution indicating that both crystal structures represent rather edge states. Most importantly, proliferating cell nuclear antigen (PCNA) was identified as an interaction partner of Hef. This interaction is mediated by a highly conserved canonical PCNA interacting peptide (PIP) motif. Intriguingly, the presence of PCNA does not alter the ATPase nor the helicase activity of taHef, thus suggesting that the interaction is entirely dedicated to recruit taHef to the replication fork to fulfill its function. Due to a high level of flexibility the taHef-taPCNA complex could not be crystallized and therefore SAXS was utilized to determine a low-resolution model of this quaternary structure. This newly discovered PCNA interaction could also be validated for the eukaryotic FANCM homolog Mph1 from the thermophilic fungus Chaetomium thermophilum (ctMph1). As the first step towards the characterization of this interaction I solved the crystal structure of PCNA from Chaetomium thermophilum (ctPCNA). Furthermore, it was possible to achieve preliminary results on the putative interaction between the human proteins FANCM and PCNA (hsFANCM, hsPCNA). In collaboration with Detlev Schindler (Human Genetics, W{\"u}rzburg) and Weidong Wang (National Institute on Aging, Baltimore, USA) co-immunoprecipitation (CoIP) experiments were performed using hsFANCM and hsPCNA expressed in HEK293 cells. Although an interaction was reproducibly observed in hydroxyurea stimulated cells further experiments and optimization procedures are required and ongoing.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Koelmel2020, author = {K{\"o}lmel, Wolfgang}, title = {Structural and functional characterization of TFIIH from \(Chaetomium\) \(thermophilum\)}, doi = {10.25972/OPUS-16176}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-161769}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2020}, abstract = {Gene expression and transfer of the genetic information to the next generation forms the basis of cellular life. These processes crucially rely on DNA, thus the preservation, transcription and translation of DNA is of fundamental importance for any living being. The general transcription factor TFIIH is a ten subunit protein complex, which consists of two subcomplexes: XPB, p62, p52, p44, p34, and p8 constitute the TFIIH core, CDK7, CyclinH, and MAT1 constitute the CAK. These two subcomplexes are connected via XPD. TFIIH is a crucial factor involved in both, DNA repair and transcription. The central role of TFIIH is underlined by three severe disorders linked to failure of TFIIH in these processes: xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. Only limited structural and functional data of TFIIH are available so far. Here, the model organism Chaetomium thermophilum was utilized with the aim to structurally and functionally characterize TFIIH. By combining the expression and purification of single TFIIH subunits with the co-expression and co-purification of dual complexes, a unique and powerful modular system of the TFIIH core subunits could be established, encompassing all proteins in high quality and fully functional. This system permits the step-wise assembly of TFIIH core, thereby making it possible to assess the influence of the intricate interaction network within TFIIH core on the overall enzymatic activities of TFIIH, which has not been possible so far. Utilizing the single subunits and dual complexes, a detailed interaction network of TFIIH core was established, revealing the crucial role of the p34 subunit as a central scaffold of TFIIH by linking the two proteins p44 and p52. Our studies also suggest that p62 constitutes the central interface of TFIIH to the environment rather than acting as a scaffold. TFIIH core complexes were assembled and investigated via electron microscopy. Preliminary data indicate that TFIIH adopts different conformational states, which are important to fulfill its functions in transcription and DNA repair. Additionally, a shortened construct of p62 was used to develop an easy-to-use, low cost strategy to overcome the crystallographic phase problem via cesium derivatization.}, subject = {Transkriptionsfaktor}, language = {en} } @phdthesis{Wolski2011, author = {Wolski, Stefanie Carola}, title = {Structural and functional characterization of nucleotide excision repair proteins}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-67183}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {XPD is a 5'-3' helicase of the superfamily 2. As part of the transcription factor IIH it functions in transcription initiation and nucleotide excision repair. This work focus on the role of XPD in nucleotide excision repair. NER is a DNA repair pathway unique for its broad substrate range. In placental mammals NER is the only repair mechanism able to remove lesions induced by UV-light. NER can be divided into four different steps that are conserved between pro- and eukaryotes. Step 1 consists of the initial damage recognition, during step 2 the putative damage is verified, in step 3 the verified damage is excised and in the 4th and final step the resulting gap in the DNA is refilled. XPD was shown to be involved in the damage verification step. It was possible to solve the first apo XPD structure by a MAD approach using only the endogenous iron from the iron sulfur cluster. Based on the apo XPD structure several questions arise: where is DNA bound? Where is DNA separated? How is damage verification achieved? What is the role of the FeS cluster? These questions were addressed in this work. Hypothesis driven structure based functional mutagenesis was employed and combined with detailed biochemical characterization of the variants. The variants were analyzed by thermal unfolding studies to exclude the possibility that the overall stability could be affected by the point mutation. DNA binding assays, ATPase assays and helicase assays were performed to delineate amino acid residues important for DNA binding, helicase activity and damage recognition. A structure of XPD containing a four base pair DNA fragment was solved by molecular replacement. This structure displays the polarity of the translocated strand with respect to the helicase framework. Moreover the properties of the FeS cluster were studied by electron paramagnetic resonance to get insights into the role of the FeS cluster. Furthermore XPD from Ferroplasma acidarmanus was investigated since it was shown that it is stalled at CPD containing lesions. The data provide the first detailed insight into the translocation mechanism of a SF2B helicase and reveal how polarity is achieved. This provides a basis for further anlayses understanding the combined action of the helicase and the 4Fe4S cluster to accomplish damage verification within the NER cascade.}, subject = {DNS-Reparatur}, language = {en} } @phdthesis{Mahrhofer2009, author = {Mahrhofer, Hartmut}, title = {Strahleninduzierte DNA-Sch{\"a}den und deren Reparatur in humanen Tumor- und Fibroblastenzelllinien detektiert mittels Histon gamma-H2AX}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-34823}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2009}, abstract = {Trotz erheblicher Fortschritte auf dem Gebiet der Strahlentherapie ist es bis heute noch nicht m{\"o}glich, die Strahlenempfindlichkeit eines Individuums bereits vor Therapiebeginn vorherzusagen. Diese Tatsache f{\"u}hrt dazu, dass es einerseits bei einem Teil der Patienten zu starken Nebenwirkungen infolge einer Bestrahlung kommt und andererseits die Therapie oftmals nicht in ausreichendem Maße anspricht. Die Entwicklung eines verl{\"a}sslichen pr{\"a}diktiven Tests stellt daher ein wichtiges Ziel der strahlentherapeutischen Forschung dar und stand auch im Zentrum dieser Arbeit. Methodisch kam dabei der Koloniebildungstest sowie die fluoreszenzmikroskopische Detektion und Bildanalyse des Histons gamma-H2AX, einem relativ neuen Marker f{\"u}r DNA-Doppelstrangbr{\"u}che, zum Einsatz. Untersucht wurde eine sehr heterogene Gruppe aus 5 Fibroblasten- sowie 5 Tumorzelllinien. Unter den Fibroblastenzelllinien befanden sich 2 normale Hautfibroblasten, 2 Hautfibroblasten von Brustkrebspatientinnen mit {\"u}berdurchschnittlich starken Hautreaktionen nach der Bestrahlung sowie eine Zelllinie mit bekannter AT-Mutation. An Tumorzelllinien kam ein Adenokarzinom der Brust, ein Malignes Melanom, ein Fibrosarkom und zwei isogene aber unterschiedlich strahlensensible Glioblastomzelllinien, die sich in Hinblick auf ihre Proteinkinasenaktivit{\"a}ten unterscheiden, zum Einsatz. Durch den Koloniebildungstest konnte eine große Bandbreite der klonogenen {\"U}berlebensraten erkannt werden, wobei Zelllinien mit Proteinkinasedefekten die gr{\"o}ßte Empfindlichkeit gegen{\"u}ber ionisierender Strahlung aufwiesen. Der Verlauf des Histons gamma-H2AX in Hinblick auf die Induktion, die Abbaukinetiken, die verbliebenen Reste nach 18 Stunden Reparaturdauer sowie die dosisabh{\"a}ngigen Kurvensteigungen zeigten jeweils einen charakteristischen Verlauf f{\"u}r jede untersuchte Zelllinie. Interessanterweise war die Hintergrundfluoreszenz bei Tumorzelllinien signifikant h{\"o}her als diejenige bei Fibroblastenzelllinien. Die strahlensensible Glioblastomzelllinie mit Proteinkinasedefekten zeigte eine deutlich protrahierte Phosphorylierung des Histons H2AX. Zwischen den {\"U}berlebensraten der Koloniebildungstests und den Ergebnissen der gamma-H2AX-Detektion wurden keine Korrelationen gefunden. Wie in dieser Arbeit gezeigt werden konnte, stellt der Verlauf des Histons gamma-H2AX einen stark zelllinienabh{\"a}ngigen Parameter dar. Das Histon gamma-H2AX besitzt dadurch ein hohes Potential um individuelle Mechanismen einer Zelllinie nach Einwirkung {\"a}ußerer Noxen, wie beispielsweise ionisierende Strahlung, zu untersuchen. Es bietet interessante Ansatzpunkte zur Beurteilung neuer Therapieregimes als auch zur Entwicklung und Bewertung strahlenmodulierender Chemotherapeutika.}, subject = {DNS-Reparatur}, language = {de} } @phdthesis{Scherer2003, author = {Scherer, Stefan}, title = {Regulation und funktionelle Analyse der menschlichen Mismatchreparaturgene /-proteine am speziellen Beispiel von hMSH2}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8317}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2003}, abstract = {Das menschliche MHS2 Gen ist eine sehr gut charakterisierte Komponente des Mismatch-Reparatur-Systems (MMR) und h{\"a}ufig mit der HNPCC Erkrankung assoziiert. Der Mechanismus {\"u}ber den MSH2 an der Karzinomentwicklung beteiligt ist, sind Defekte in der DNA-Reparatur. Es konnte gezeigt werden, dass Mutationen in den kodierenden Regionen dieses Gens direkt in die Mikrosatelliteninstabilit{\"a}t involviert sind. Generell ist MSH2 ein Teil des postreplikativen Reparatursystems der Zellen, und sch{\"u}tzt so vor der Akkumulation von Mutationen. Dadurch wird die genetische Stabilit{\"a}t und Integrit{\"a}t gew{\"a}hrleistet. Ein anderer Teil der zellul{\"a}ren Krebsabwehr ist das p53 Tumorsuppressorgen. Ein m{\"o}glicher DNA Schaden, der in der Lage ist, p53 zu aktivieren, ist UV-Licht. Eine weitere gut charakterisierte Komponente der zellul{\"a}ren UV Reaktion ist der Transkriptionsfaktor c-Jun. Ziel der Arbeit war es die Regulation und Signalfunktion von MSH2 n{\"a}her zu charakterisieren. Dazu wurde der Promotor des Gens in ein Luziferase Promotorgenkonstrukt kloniert. Dieses Konstrukt wurde in menschliche Keratinozyten transfiziert, die nachfolgend mit UV bestrahlt wurden. Es konnte eine zeit- und dosisabh{\"a}ngige Hochregulation von MSH2 gezeigt werden. Diese Transkriptionserh{\"o}hung wurde von p53 initiiert, denn durch eine gezielte Mutation der p53-Bindungsstelle im MSH2 Promotor war dieser Effekt vollkommen aufgehoben. Interessanterweise war dieser Effekt von einem zus{\"a}tzlichen Faktor abh{\"a}ngig, ohne den keine Hochregulation erkennbar war. Verantwortlich hierf{\"u}r war der Transkriptionsfaktor c-Jun. Dadurch konnte eine funktionelle Interaktion von p53 und c-Jun in der transkriptionellen Aktivierung von hMSH2 gezeigt werden. Dieser zeit- und dosisabh{\"a}ngige Effekt war sowohl auf RNA als auch auf Proteinebene nachvollziehbar. Der gr{\"o}ßte Anstieg war bei 50 J/m2 zu verzeichnen, wohin gegen bei Verwendung von 75 J/m2 die Transkriptmenge geringer wurde, um bei 100 J/m2 erneut anzusteigen. Um diesen erneuten Anstieg des Proteins n{\"a}her zu beschreiben wurden bei den stark bestrahlten Zellen TUNEL-Untersuchungen durchgef{\"u}hrt. Hierbei zeigte sich eine positive Korrelation zwischen der Menge an MSH2 Protein und an TUNEL-positiven apoptotischen Zellen. Um weiter zu zeigen, dass der zweite Anstieg des Proteins nicht mit einer Reparaturfunktion verbunden ist, wurde ein biochemisch basierter Test durchgef{\"u}hrt, welcher die Reparaturkapazit{\"a}t semiquantitativ beschreibt. Dabei konnte klar gezeigt werden, dass die mit 100 J/m2 bestrahlten Zellen keine Reparaturfunktion mehr erf{\"u}llen. FACS-Analysen und Zellf{\"a}rbungen gegen Annexin V und mit Propidiumiodid best{\"a}tigten die stattfindende Apoptose in den Zellen. Eine weitere Komponente des MMR-Systems ist MSH6. MSH6 bildet mit MSH2 ein Dimer, welches den Fehler in der DNA erkennt und das weitere Reparaturprogramm einleitet. Die Expression dieses Proteins konnte nur bis zu einer Dosis von 50-75 J/m2 UV nachgewiesen werden. Im Gegensatz zu MSH2 war MSH6 nicht in 100 J/m2 bestrahlten Keratinozyten detektierbar. Um {\"u}ber die Lokalisation dieser Proteine mehr zu erfahren wurden Immunf{\"a}rbungen gegen MSH2 durchgef{\"u}hrt. Es zeigte sich eine Translokation des Proteins vom Kern in das Zytoplasma in Korrelation zum zunehmenden DNA-Schaden durch h{\"o}here Dosen an UV-Licht. Dies stellt eine m{\"o}gliche Verbindung zwischen dem Mismatch-Reparatursystem und apoptotischen Signalwegen dar.}, subject = {Mensch}, language = {de} } @phdthesis{Xu2022, author = {Xu, Wenshan}, title = {Regulation of the DNA Damage Response by the Ubiquitin System}, doi = {10.25972/OPUS-16006}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-160064}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2022}, abstract = {DNA damage occurs frequently during normal cellular progresses or by environmental factors. To preserve the genome integrity, DNA damage response (DDR) has evolved to repair DNA and the non-properly repaired DNA induces human diseases like immune deficiency and cancer. Since a large number of proteins involved in DDR are enzymes of ubiquitin system, it is critical to investigate how the ubiquitin system regulates cellular response to DNA damage. Hereby, we reveal a novel mechanism for DDR regulation via activation of SCF ubiquitin ligase upon DNA damage. As an essential step for DNA damage-induced inhibition of DNA replication, Cdc25A degradation by the E3 ligase β-TrCP upon DNA damage requires the deubiquitinase Usp28. Usp28 deubiquitinates β-TrCP in response to DNA damage, thereby promotes its dimerization, which is required for its activity in substrate ubiquitination and degradation. Particularly, ubiquitination at a specific lysine on β-TrCP suppresses dimerization. The key mediator protein of DDR, 53BP1, forms oligomers and associates with β-TrCP to inhibit its activity in unstressed cells. Upon DNA damage, 53BP1 is degraded in the nucleoplasm, which requires oligomerization and is promoted by Usp28 in a β-TrCP-dependent manner. Consequently, 53BP1 destruction releases and activates β-TrCP during DNA damage response. Moreover, 53BP1 deletion and DNA damage promote β-TrCP dimerization and recruitment to chromatin sites that locate in the vicinity of putative replication origins. Subsequently, the chromatin-associated Cdc25A is degraded by β-TrCP at the origins. The stimulation of β-TrCP binding to the origins upon DNA damage is accompanied by unloading of Cdc45, a crucial component of pre-initiation complexes for replication. Loading of Cdc45 to origins is a key Cdk2-dependent step for DNA replication initiation, indicating that localized Cdc25A degradation by β-TrCP at origins inactivates Cdk2, thereby inhibits the initiation of DNA replication. Collectively, this study suggests a novel mechanism for the regulation of DNA replication upon DNA damage, which involves 53BP1- and Usp28-dependent activation of the SCF(β-TrCP) ligase in Cdc25A degradation.}, subject = {DNS-Sch{\"a}digung}, language = {en} }