@phdthesis{Gehring2001, author = {Gehring, Iris}, title = {Volcanostratigraphy using geophysical methods on La Fossa di Vulcano (S-Italy)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-1181941}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {For many active volcanoes all over the world a civil protection program, normally combined with hazard maps, exists. Optimising of hazard maps and the associated hazard assessment implies a detailed knowledge of the volcanostratigraphy, because the deposits provoke information on the potential behaviour during a new activity cycle. Pyroclastic deposits, however, may vary widely in thickness and distribution over very short lateral distances. High resolution characterisation of single strata often cannot be archived, if solely sedimentological and geochemical methods are used. Gamma-ray measurements taken in the field combined with grain-size depended magnetic susceptibility measurements made in the laboratory are used in this work to optimise the resolution of volcanostratigraphic investigations. The island of Vulcano is part of the Aeolian Archipelago sited of the northern coast of Sicily. La Fossa cone is the active centre of Vulcano, where fumarolic and seismic activity can be observed. The cone was built up during the last 6,000 years, whereby the last eruption period is dated to historic times (1888-1890). For the tuff cone La Fossa the most likely volcanic hazards are the emplacement of pyroclastic deposits as well as gas hazards (especially SOx and CO2), due to this the detailed knowledge of the stratigraphy is mandatory. Most of the population resides in Vulcano Porto and the nearby sited peninsula of Vulcanello, which are highly endangered locations for a future eruption scenario. Measurements, made in standard outcrops, allow a characterisation of the successions Punte Nere, Tufi Varicolori, Palizzi, Commenda, and Cratere Attuale. A discrimination of all successions by solely one of the methods is rarely possible. In some cases, however, the combination of the methods leads to clear results. It can also be noticed that the exposition as well as the sedimentation type (wet-surge or dry-surge deposits) affect the measurements. In general it can be assumed that the higher the magma is evolved the higher the g -ray values and the lower the susceptibility values. Measurements from the Wingertsberg (Laacher See deposits, Eifel, W-Germany) show clearly that a higher degree of magma evolution correlates with lower susceptibility and higher gamma-ray values. Variations of the values can be observed not only by the change of the degree of magmatic evolution but also by the inhomogeneous deposition conditions. Particularly the gamma-ray measurements show lower values for the wet-surge deposits than for the dry-surge deposits, even though the erupted material has the same geochemical composition. This can be explained especially by reactions inside of the moist eruption cloud and short-time after deposition, when easily soluble elements like K, U, and Th can be leached by these aggressive fluids. Even extended exposition and high water content can provoke depletion of various elements within the complete or parts of the outcrop, too. If the deposits are affected by a fumarolic activity especially the susceptibility values show significant variations, whereas in general extreme low values are observed. Contamination of deposits also can occur, if they are overlain by weathered deposits of higher concentration of K, U, and Th. Weathering and mobilisation within the upper deposits can generate an element enrichment within the lower deposits. In general the element ratios of the barried underlying deposits are less affected than the exposed ones. After gauging the values of the well defined succession for standard outcrops undefined outcrops were measured. These outcrops are not clearly classified by sedimentological and geochemical methods, thus a correlation with the combined geophysical methods is useful. In general the combination of the methods allows a correlation, although in some cases more than one interpretation is possible. But in connection with time marker horizons as well as sedimentological features an interpretation is feasible. These situations show that a classification solely based on geophysical methods is possible for many cases but, if the volcanic system is more complex, a combination with sedimentological and geochemical methods may be needed. The investigations on Vulcano, documented in this work, recommend a re-interpretation of the dispersial of some successions of La Fossa cone, especially the presumption that Tufi Varicolori only exist inside of the Caldera of La Fossa. As a consequence the eruption and energy model especially for Tufi Varicolori have to be reviewed.}, subject = {Vulcano}, language = {en} } @phdthesis{Emmert2020, author = {Emmert, Adrian Alexander}, title = {The Internal Structure of Periglacial Landforms - Assessments of Subsurface Variations in Permafrost-related and Frost-related Phenomena by Multi-dimensional Geophysical Investigations}, edition = {1. Auflage}, publisher = {W{\"u}rzburg University Press}, address = {W{\"u}rzburg}, isbn = {978-3-95826-138-9}, doi = {10.25972/WUP-978-3-95826-139-6}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-202437}, school = {W{\"u}rzburg University Press}, pages = {xix, 167}, year = {2020}, abstract = {The internal structure of periglacial landforms contains valuable information on past and present environmental conditions. To benefit from this archive, however, an enhanced understanding of subsurface variations is crucial. This enables to assess the influence of the internal structure on prevailing process regimes and to evaluate the sensitivity of different landform units to environmental changes. This thesis investigates structural variations in the subsurface of (i) rock glaciers,(ii) solifluction lobes, (iii) palsas/ lithalsas and (iv) patterned ground, which occur between the different landform types, but also between landform units of the same type. Investigated variables comprise (i) the spatial distribution of permafrost, (ii) ground ice content, (iii) the origin of ground ice, (iv) thickness of the active layer and (v) frost table topography. Multi-dimensional investigations by the geophysical methods Electrical Resistivity Imaging (ERI) and Ground-Penetrating Radar (GPR) were performed in six study areas (a-f): four of them are located in high-alpine environments in Switzerland and two of them are located in the subarctic highlands of Iceland. Additionally, surface and subsurface temperature values were continuously recorded at selected study sites. At one study site, pF-values, representing the matric potential (or water potential), were recorded. From a methodological view, this thesis focuses on the application of quasi-3-D ERI, an approach in which many two-dimensional data sets are combined to create one three-dimensional data set. This permits e.g., a three-dimensional delimitation of subsurface structures and a spatial investigation of the distribution of ground ice. Besides the analysis of field data, this thesis incudes a comparison between inversion models produced with different software products, based on two synthetic data sets. The detection of resistivity structures and reflection patterns provides valuable insights into the internal structure of the investigated landform units: At the high-alpine study site at (a) Piz Nair, a highly variable ice content indicates a complex development of the investigated rock glacier assembly. The local formation of ground ice is attributed to an embedding of surface patches of snow or ice into the subsurface by rockfall. Results of geoelectric monitoring surveys on selected rock glaciers show the influence of seasonal alterations in the internal structure on subsurface meltwater flow. At the study site at (b) Piz {\"U}ertsch, results indicate the occurrences of isolated ground ice patches in a significantly larger rock glacier. Detected characteristics of the internal structure enable to reconstruct the development of the rock glacier, in which a temporary override of an adjacent glacier tongue on the rock glacier is considered crucial for the current distribution of ground ice. However, results of this thesis clearly show the absence of buried glacier ice in the subsurface of the rock glacier. Results from a rock glacier near the (c) Las Trais Fluors mountain ridge affirm the existence of a water-permeable frozen layer, which was assumed in previous studies. Furthermore, results show that the rock glacier contains large amounts of rockfall deposits. A joint interpretation of ERI and GPR results from the investigated scree slope at the mountain (d) Blauberg (Furka Pass) reveals characteristic structures in the subsurface, which enable a differentiation between solifluction lobes and pebbly rock glaciers. At the subarctic study site (e) Orravatnsr{\´u}stir, results show that the internal structure of palsas can be used to deduce their current development stage and to assess past and future developments. Presented results affirm a long history of palsa development at the study site, as assumed in previous studies, but indicate recently changing environmental conditions. The investigated occurrences of patterned ground in the proglacial area of the glacier (f) Hofsj{\"o}kull are currently not influenced by the detected occurrence of permafrost, according to the presented results. Therefore, a temporary formation of pattered ground is assumed, which is linked to the retreat of the glacier. This thesis shows discrepancies between the internal structure of some of the investigated landform units and the recent environmental conditions. This indicates a delayed adaption and a low sensitivity of the landform units to environmental changes. Findings indicate that the future development of permafrost will be strongly affected by variations in snowfall. Furthermore, the detection of isolated occurrences of ground ice at several study sites contradicts the widely assumed effectivity of balancing heat fluxes to create homogenous subsurface conditions in relatively fine-grained subsurface materials.}, subject = {Permafrost}, language = {en} } @phdthesis{Spitznagel2017, author = {Spitznagel, Niko}, title = {Energy transfer during molten fuel coolant interaction}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-142891}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2017}, abstract = {The contact of hot melt with liquid water - called Molten Fuel Coolant Interaction (MFCI) - can result in vivid explosions. Such explosions can occur in different scenarios: in steel or powerplants but also in volcanoes. Because of the possible dramatic consequences of such explosions an investigation of the explosion process is necessary. Fundamental basics of this process are already discovered and explained, such as the frame conditions for these explosions. It has been shown that energy transfer during an MFCI-process can be very high because of the transfer of thermal energy caused by positive feedback mechanisms. Up to now the influence of several varying parameters on the energy transfer and the explosions is not yet investigated sufficiently. An important parameter is the melt temperature, because the amount of possibly transferable energy depends on it. The investigation of this influence is the main aim of this work. Therefor metallic tin melt was used, because of its nearly constant thermal material properties in a wide temperature range. With tin melt research in the temperature range from 400 °C up to 1000 °C are possible. One important result is the lower temperature limit for vapor film stability in the experiments. For low melt temperatures up to about 600 °C the vapor film is so unstable that it already can collapse before the mechanical trigger. As expected the transferred thermal energy all in all increases with higher temperatures. Although this effect sometimes is superposed by other influences such as the premix of melt and water, the result is confirmed after a consequent filtering of the remaining influences. This trend is not only recognizable in the amount of transferred energy, but also in the fragmentation of melt or the vaporizing water. But also the other influences on MFCI-explosions showed interesting results in the frame of this work. To perform the experiments the installation and preparation of the experimental Setup in the laboratory were necessary. In order to compare the results to volcanism and to get a better investigation of the brittle fragmentation of melt additional runs with magmatic melt were made. In the results the thermal power during energy transfer could be estimated. Furthermore the model of "cooling fragments " could be usefully applied.}, subject = {Vulkanologie}, language = {en} } @phdthesis{Diele2000, author = {Diele, Laurence Martine}, title = {Der Pulvermaar-Vulkan}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-2397}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Das etwa 20 000 Jahre alte Pulvermaar in der Westeifel besitzt einen 72 m tiefen, zentral liegenden See und einen stellenweise mindestens 45 m m{\"a}chtigen Tuffwall. Durch seinen außergew{\"o}hnlich guten Erhaltungszustand nimmt es eine Sonderstellung ein. Um auch den Tiefbau dieser Struktur besser kennenzulernen, wurden geophysikalische Messungen mit dem Ziel einer dreidimensionalen Modellierung durchgef{\"u}hrt. {\"U}ber beides wird in dieser Arbeit berichtet. Den Schwerpunkt der geophysikalischen Untersuchungen bildet ein Gravimetrieprogramm mit der Erstellung einer Schwerekarte des Pulvermaars und seiner Umgebung. Im Rahmen dieser Schweremessungen hat der Einsatz des GPS-Systems zur Vermessung ein besonderes Gewicht. Die Magnetfeldmessungen der Totalintensit{\"a}t konzentrieren sich mit einem dichten Meßnetz auf den Seebereich (Messungen im Boot). Mit Widerstands-Tiefensondierungen der Geoelektrik wird versucht, zu einer pr{\"a}ziseren Bestimmung der Tuffm{\"a}chtigkeiten zu gelangen. Die gewonnene Schwerekarte dient einer dreidimensionalen Modellierung auf der Basis der Freiluftanomalie mit dem Programm IGMAS. Die verh{\"a}ltnism{\"a}ßig kleine (negative) Schwere-anomalie von 1 - 2 mGal {\"u}ber dem Pulvermaar l{\"a}ßt vermuten, daß ein Basaltk{\"o}rper in das Diatrem eingebettet ist und zur kleinen Amplitude beitr{\"a}gt. Die Magnetfeldmessungen er-h{\"a}rten diese Vorstellung; das Ergebnis einer einfachen Modellierung f{\"u}r ein diametrales Profil ist mit einem 40 m m{\"a}chtigen Basaltk{\"o}rper grob 120 m unter Seeoberfl{\"a}che ver-tr{\"a}glich. Die Ergebnisse der gravimetrischen und magnetischen Modellierung, die M{\"a}chtigkeitsab-sch{\"a}tzungen f{\"u}r die pyroklastischen Ablagerungen aufgrund der Geoelektrik-Messungen sowie die Einbeziehung einer Volumenkalkulation f{\"u}r die Pyroklastika f{\"u}hren zu einem detaillierten Modell f{\"u}r das Pulvermaar, das sich insbesondere durch ein 2000 m tief reichendes Diatrem auszeichnet. Eine Bearbeitung des Schwerefeldes mit der Berechnung von Gradientenfeldern f{\"u}hrt zu einem bisher von Maaren nicht bekannten Ergebnis: Um das Pulvermaar herum existiert ein Hof erniedrigter Dichte mit einem Durchmesser von grob 2 km. Als Ursache wird eine Auf-lockerung des Gesteins durch Streß-Wellen angenommen, die ihren Ursprung in den wiederholten starken Eruptionen der Maar-Entstehung haben. Ebenfalls die Gradienten-felder der Gravimetrie zeigen Zusammenh{\"a}nge zwischen der Struktur des Maares und der regionalen Tektonik auf.}, subject = {Eifel / Moor}, language = {de} }