@phdthesis{Froehlich2000, author = {Fr{\"o}hlich, Birgit Susanne}, title = {Wachse der Honigbiene Apis mellifera carnica Pollm.}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-1253}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2000}, abstract = {Um einen Beitrag zum besseren Verst{\"a}ndnis der Rolle der Bienenwachse in der Kommunikation der Honigbienen leisten zu k{\"o}nnen, wurden Wabenwachse unterschiedlichen Alters und Kutikulawachse unterschiedlicher Kasten,Geschlechter und Berufsgruppen mit Hilfe von Gaschromatographie, Massenspektroskopie und FTIR-Spektroskopie untersucht. Die chemischen Analysen zeigten mittels Diskriminantenfunktionsanalysen hochsignifikante Unterschiede in den aliphatischen Kohlenwasserstoffen zwischen Wabenwachsen unterschiedlichen Alters und Kutikulawachsen unterschiedlicher Kasten und Geschlechter. Erstmals konnte f{\"u}r ein komplexes Substanzgemisch (Bienenwachs) eine lineare Abh{\"a}ngigkeit zwischen dem Schmelzverhalten und der chemischen Zusammensetzung der Wachse nachgewiesen werden.Mit Hilfe von Verhaltensversuchen wurde der Frage nachgegangen, ob die chemischen Unterschiede f{\"u}r die Bienen {\"u}berhaupt relevant sind. Mit Hilfe der differentielle Konditionierung des R{\"u}sselreflexes wurde getestet, inwieweit Bienen die verschiedenen Wachse unterscheiden k{\"o}nnen. Eine Diskriminierung der Wachse aufgrund der aliphatischen Kohlenwasserstoffe war den Honigbienen nicht m{\"o}glich. Dies ergab einen neuen und interessanten Einblick in die Kommunikation der Honigbienen}, subject = {Biene}, language = {de} } @book{Heyer2018, author = {Heyer, Marlis}, title = {Von Menschenkindern und Honigbienen. Multispecies-Perspektiven auf Begegnungen am Bienenstand.}, doi = {10.25972/OPUS-16707}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-167072}, publisher = {Universit{\"a}t W{\"u}rzburg}, pages = {60}, year = {2018}, abstract = {Honigbienen und Menschenkinder begegnen sich unter der Anleitung von Imker_innen an vielen Orten in Berlin. Doch auch wenn Kinder Honig essen, Biene Maja im Fernsehen anschauen oder vor dem drohenden Stich gewarnt werden, sind sie mit Bienen in Kontakt und konzipieren die Insekten als nicht-menschliche Andere. Die vorliegende Arbeit geht der Frage nach, wie die allt{\"a}glichen und oftmals pop-kulturell gepr{\"a}gten kindlichen Vorstellungen von Bienen die multispecies-Begegnungen in der mensch-bienlichen contact zone mitgestalten. Welche Art Bienen treffen Kinder eigentlich, wenn sie einen Imker_innenstand besuchen? Was f{\"u}r ein Wesen begegnet ihnen, kann ihnen {\"u}berhaupt auf Basis ihres Vorwissens begegnen? Und wie begegnen die Bienen ihrerseits den Kindern? Mit ethnografischen Methoden und sprachlichem Feingef{\"u}hl analysiert Marlis Heyer die Begegnungen der Akteur_innen und lotet dabei auch die M{\"o}glichkeiten und Grenzen der Europ{\"a}ischen Ethnologie aus, sich mit nicht-menschlichen Anderen zu besch{\"a}ftigen.}, subject = {Biene}, language = {de} } @phdthesis{Bujok2005, author = {Bujok, Brigitte}, title = {Thermoregulation im Brutbereich der Honigbiene Apis mellifera carnica}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-15903}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {Honigbienen (Apis mellifera carnica) regulieren die Temperatur ihrer Brut in einem sehr engen Temperaturfenster, da vor allem die gedeckelte Brut sehr temperaturempfindlich reagiert (Groh et al. 2004). Die Thermoregulation ist nicht - wie lange angenommen - Beiprodukt von allt{\"a}glichen Arbeiten der Bienen im Brutbereich, sondern eine aktive und Energie- und Zeitaufw{\"a}ndige eigene T{\"a}tigkeit. Arbeiterinnen ziehen sich mit ihren Beinen an die Brutoberfl{\"a}che, dr{\"u}cken ihren warmen Thorax auf die Brutdeckel und verharren so f{\"u}r einige Minuten um mit der eigenen K{\"o}rperw{\"a}rme die Brut zu temperieren (Bujok et al. 2002). Wie erwartet korrelierte die Thoraxtemperatur einer Arbeiterin mit der Frequenz der abdominalen Atembewegungen, bei sehr hohen Thoraxtemperaturen ({\"u}ber 40°C) erreichten die Bienen Atemfrequenzen von {\"u}ber 8Hz. Eine weitere Methode die Brut effektiv zu w{\"a}rmen {\"u}bten Bienen aus, die leere Zellen im gedeckelten Brutbereich besuchen (Kleinhenz et al. 2003). Arbeiterinnen gingen dabei bevorzugt in Zellen, die von m{\"o}glichst vielen gedeckelten Zellen umgeben waren. Sowohl die Dauer der Zellbesuche, als auch die mittlere Thoraxtemperatur bei Ein- und Austritt der Zelle korrelierten mit der Anzahl der benachbarten Brutzellen - je mehr Brutzellen eine leere Zelle in ihrer direkten Nachbarschaft hatte umso l{\"a}nger dauerte der Besuch einer Biene und umso h{\"o}her ist die Ein- bzw. Austrittstemperatur der Biene. Mindestes 48 Stunden alte Bienen unterschieden sich signifikant in ihrem W{\"a}rmeverhalten von j{\"u}ngeren Bienen. Tote gedeckelte Brut wurde in manchen F{\"a}llen {\"u}ber viele Tage (durchgehend bis 10 Tage) gew{\"a}rmt, sie unterschied sich in ihrer Temperatur nicht von unbehandelter gedeckelter Brut. In weiteren Versuchen lag die Bruttemperatur von toter Brut zwar unter der eines Kontrollbereiches, die Temperatur lag aber weiterhin im optimalen Bereich von 33,5 bis 35°C (Groh et al. 2004). In diesen Versuchen wurde die tote Brut vor dem Einsetzen in den Beobachtungsstock wieder auf 35°C erw{\"a}rmt. Wachskegel in gedeckelten Zellen wurden erkannt und ausger{\"a}umt. Aktive Signale, die von der Brut ausgehen scheinen also nicht notwendig f{\"u}r die effektive Bruttemperaturregulierung zu sein. Untersuchungen mittels Laser-Doppler-Vibrometrie zeigten auch keine Hinweise auf eine mechanische Kommunikation zwischen den Puppen und den Arbeiterinnen. Das Brutw{\"a}rmen scheint eine Aktion zu sein, die von den Bienen nur in Gemeinschaft sinnvoll durchgef{\"u}hrt werden kann. In einigen F{\"a}llen kam es w{\"a}hrend der Puppenphase zu unerkl{\"a}rlichen Abf{\"a}llen in der Bruttemperatur, die nur durch einen positiven R{\"u}ckkopplungseffekt seitens der Arbeiterinnen erkl{\"a}rt werden kann. Beim Brutw{\"a}rmen spielen die Antennen der Arbeiterinnen wahrscheinlich eine wichtige Rolle. W{\"a}hrend sich die Bienen beim aktiven Brutw{\"a}rmen den Brutdeckel ann{\"a}hern sind die Antennenspitzen immer auf die Brutdeckel gerichtet. Fehlen den Arbeiterinnen die Antennen, dann ist die Thermoregulation eingeschr{\"a}nkt oder unzureichend. Die Bruttemperatur korreliert mit der Anzahl der abgetrennten Antennensegmente, je mehr Antennensegmente fehlen, desto weniger gut wird die Temperatur im Brutbereich hoch und konstant gehalten. Zus{\"a}tzlich scheint es eine Lateralit{\"a}t in der Antennenfunktion zu geben, wurde die rechte Antenne gek{\"u}rzt w{\"a}rmten die Bienen die Brut signifikant schlechter, als beim K{\"u}rzen der linken Antenne. Durch das K{\"u}rzen der Antennen {\"a}nderte sich auch das Verhalten der Tiere: Kontrollbienen verharrten ruhig im Brutbereich, w{\"a}hrend Bienen mit gek{\"u}rzten Antennen teilweise {\"a}hnlich warm waren, aber nicht mehr das oben beschriebene aktive Brutw{\"a}rmeverhalten zeigten.}, subject = {Biene}, language = {de} } @phdthesis{Pahl2011, author = {Pahl, Mario}, title = {Honeybee Cognition: Aspects of Learning, Memory and Navigation in a Social Insect}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-66165}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2011}, abstract = {Honeybees (Apis mellifera) forage on a great variety of plant species, navigate over large distances to crucial resources, and return to communicate the locations of food sources and potential new nest sites to nest mates using a symbolic dance language. In order to achieve this, honeybees have evolved a rich repertoire of adaptive behaviours, some of which were earlier believed to be restricted to vertebrates. In this thesis, I explore the mechanisms involved in honeybee learning, memory, numerical competence and navigation. The findings acquired in this thesis show that honeybees are not the simple reflex automats they were once believed to be. The level of sophistication I found in the bees' memory, their learning ability, their time sense, their numerical competence and their navigational abilities are surprisingly similar to the results obtained in comparable experiments with vertebrates. Thus, we should reconsider the notion that a bigger brain automatically indicates higher intelligence.}, subject = {Biene}, language = {en} } @phdthesis{Blatt2001, author = {Blatt, Jasmina}, title = {Haemolymph sugar homeostasis and the control of the proventriculus in the honeybee (Apis mellifera carnica L.)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-880}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2001}, abstract = {The proventriculus regulates the food passage from crop to midgut. As the haemolymph provides a constantly updated indication of an insect's nutritional state, it is assumed that the factor controlling the proventri-culus activity is to be found in the haemolymph. The purpose of this doctoral thesis was to investigate how output (metabolic rate), input (food quality and food quantity) and internal state variables (haemolymph osmolarity and haemolymph sugar titer) affect each other and which of these factors controls the activity of the proventriculus in the honeybee. Therefore free-flying foragers were trained to collect con-trolled amounts of different sugar solutions. Immediately after feeding, metabolic rates were measured over different periods of time, then crop-emptying rates and haemolymph sugar titers were measured for the same individual bees. Under all investigated conditions, both the sugar transport rates through the proventriculus and the haemolyph sugar titers depended mainly on the metabolism. For bees collecting controlled amounts of 15 per cent, 30 per cent or 50 per cent sucrose solution haemolymph trehalose, glucose and fructose titers were constant for metabolic rates from 0 to 4.5 mlCO2/h. At higher metabolic rates, trehalose concentration decreased while that of glucose and fructose increased with the exception of bees fed 15 per cent sucrose solution. As the supply of sugar from the crop via the proventriculus was sufficient to support even the highest metabolic rates, the observed pattern must result from an upper limit in the capacity of the fat body to synthesise trehalose. The maximal rate of conversion of glucose to trehalose in the fat body was therefore calculated to average 92.4 µg glucose/min. However, for bees fed 15 per cent sucrose solution both the rate of conversion of glucose to trehalose and the rate of sugar transport from the crop to the midgut were limited, causing an overall decrease in total haemolymph sugar titers for metabolic rates higher than 5 mlCO2/h. Haemolymph sucrose titers were generally low but increased with increasing metabolic rates, even though sucrose was not always detected in bees with high metabolic rates. Though foragers were able to adjust their sugar transport rates precisely to their metabolic rates, a fixed surplus of sugars was transported through the proventriculus under specific feed-ing conditions. This fixed amount of sugars increased with increasing concentration and in-creasing quantity of fed sugar solution, but decreased with progressing time after feeding. This fixed amount of sugars was independent of the metabolic rates of the bees and of the molarity and viscosity of the fed sugar solution. As long as the bees did not exhaust their crop content, the haemolymph sugar titers were unaffected by the sugar surplus, by the time after feeding, by the concentration and by the viscosity of fed sugar solution. When bees were fed pure glucose (or fructose) solutions, un-usually little fructose (or glucose) was found in the haemolymph, leading to lower total haemolymph sugar titers, while the trehalose titer remained unaffected. In order to investigate the mechanisms underlying the regulation of the honeybee proven-triculus, foraging bees were injected either with metabolisable (glucose, fructose, trehalose), or non-metabolisable sugars (sorbose). Bees reacted to injections of metabolisable sugars with reduced crop-emptying rates, but injection of non-metabolisable sugars had no influence on crop emptying. Therefore it is concluded that the proventriculus regulation is controlled by the concentration of metabolisable compounds in the haemolymph, and not by the haemo-lymph osmolarity. A period of 10min was enough to observe reduced crop emptying rates after injections. It is suggested that glucose and fructose have an effect on the proventriculus activity only via their transformation to trehalose. However, when the bees were already in-jected 5min after feeding, no response was detectable. In addition it was investigated whether the overregulation is the result of feed-forward regulation for the imminent take-off and flight. In a first experiment, we investigated whether the bees release an extra amount of sugar solution very shortly before leaving for the hive. In a second experiment, it was tested whether the distance covered by the bees might have an influence on the surplus amount released prior to the take-off. In a third experiment, it was investigated if walking bees fail to release this extra amount of sugars, as they do not have to fly. Though we were not able to demonstrate that the overregulation is the result of feed-forward regulation for the imminent take-off and flight, it is conceivable that this phenome-non is a fixed reaction in foragers that can not be modulated. To investigate whether regulated haemolymph sugar titers are also observed in honeybee foragers returning from natural food sources, their crop contents and haemolymph sugar titers were investigated. While the quantity of the collected nectar was without influence on the haemolymph sugar titers, foragers showed increasing haemolymph sugar titers of glucose, fructose and sucrose with increasing sugar concentration of the carried nectar. In contrast no relationship between crop nectar concentrations and haemolymph trehalose titers was observed. We are sure that the regulation of food passage from crop to midgut is controlled by the trehalose titer. However, under some conditions the balance between consumption and income is not numerically exact. This imprecision depends on the factors which have an impact on the foraging energetics of the bees but are independent of those without influence on the foraging energetics. Therefore we would assume that the proventriculus activity is modulated by the motivational state of the bees.}, subject = {Biene}, language = {en} } @phdthesis{Prusko2006, author = {Prusko, Carsten Dietmar}, title = {Evolutionary Diversification of Protein Functions : From Translation in Prokaryotes to Innate Immunity in Invertebrates}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-18517}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2006}, abstract = {With the progress in sequencing of the honey bee genome new data become available which allows the search and identification of genes coding for homologous proteins found in other organism. Two genes coding for c-type lysozymes were identified in the genome of A. mellifera through an online-based BLAST search. Expression of both intron-less genes seems not to be under the regulatory control of either of the two pathways involved in humoral insect immunity, i.e. Toll and Imd, since no NF-\&\#954;B transcription factor binding sites are found upstream of the genes. The encoded Lys-1 and Lys-2 are 157 and 143 amino acid long, respectively, and share a sequence similarity of 90\%. Further in silico analysis revealed a signal peptidase cleavage site at the N-terminus of each amino acid sequence, strongly suggesting a secretion of the enzymes into the surrounding environment of the producing cells. Sequence alignments of both amino acid sequences with other c-type lysozymes identified the highly conserved active site glutamic acid (Glu32) as well as eight highly conserved cysteine residues. However, an important aspartic acid (Asp50) in the active site that helps to stabilize a substrate intermediate during catalysis is replaced by a serine residue in the lysozymes of A. mellifera. The replacement of the active site aspartic acid in the honey bee lysozymes suggests a different catalytic mechanism and/or a different substrate-specificity in respect to other c-type lysozymes. Furthermore, 3D-models of Lys-1 and Lys-2 were generated based on the sequence similarity of A. mellifera lysozymes with other c-type lysozymes. The published 3D structure of the lysozyme from the silkmoth Bombyx mori, which shares the highest sequence similarity of all available structures with A. mellifera lysozymes, was used as template for the construction of the 3D-models. The models of Lys-1 and Lys-2 suggest that both enzymes resemble, in large part, the structure of B. mori lysozyme. In order to identify the set of AMPs in the hemolymph of A. mellifera, hemolymph of immunized bees was analyzed. Applying SDS-polyacrylamide gel electrophoresis and mass spectrometry on hemolymph from immunized bees, three out of the four peptides were identified, i.e. abaecin, defensin 1 and hymenoptaecin. Furthermore, Lys-2 was identified in the hemolymph by mass spectrometry, conclusively demonstrating the presence of a lysozyme in the hemolymph of A. mellifera for the first time. However, the protein levels of Lys-2 were not affected by bacterial injection, suggesting that the gene expression of the putative antibacterial protein is not under the regulatory control of the Imd and/or Toll pathway. Besides the abovementioned antimicrobial peptides, the 76 kDa large transferrin was also identified. Transferrin is an iron-binding protein that has been implicated in innate immunity in the honey bee. Furthermore, the effect of pathogenic dose, the timeline of peptide induction and the age-related accumulation of the aforementioned AMPs were studied. The intensity of expression of the antimicrobial peptides, abaecin, defensin 1, and hymenoptaecin as well as transferrin increased proportionally with the amount of bacteria injected into the hemocoel. No such effect was observed for the protein levels of Lys-2. Furthermore, up-regulation of the three antibacterial peptides and transferrin was observed within the first 24 h following infection with E. coli (gram-). Infection with the gram+ bacterium Micrococcus flavus resulted in high and moderate protein levels for transferrin and abaecin, respectively, whereas hardly any accumulation of hymenoptaecin was observed, indicating that the gene expression of abaecin and transferrin is somehow positively correlated, and would suggest a shared regulatory pathway that differs from that of hymenoptaecin. Although bacterial infections didn't seem to stimulate the production of Lys-2, different concentrations in the hemolymph were observed in bees of different ages, suggesting a correlation between the expression of Lys-2 and the age-related division of labor of adult worker honey bees, also known as age polyethism. The results further allow a proposed causal connection between the age-dependent accumulation of Lys-2 and the hemolymph titer of the gonotrophic hormone juvenile hormone, which is the "behavioral pacemaker" in adult honey bees.}, subject = {Biene}, language = {en} } @phdthesis{Groh2005, author = {Groh, Claudia}, title = {Environmental influences on the development of the female honeybee brain Apis mellifera}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-17388}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2005}, abstract = {F{\"u}r die Honigbiene spielt der Geruchssinn eine entscheidende Rolle bei der Kommunikation innerhalb des Sozialstaates. Kastenspezifische, auf uweltbedingten Einfl{\"u}ssen basierende sowie altersbedingte Unterschiede im olfaktorisch gesteuerten Verhalten liefern ein hervorragendes Modellsystem f{\"u}r diese Studie, um die Entwicklung und Funktion neuronaler Plastizit{\"a}t im olfaktorischen System zu untersuchen. Diese Studie konzentriert sich auf Unterschiede zwischen K{\"o}niginnen und Arbeiterinnen, den beiden weiblichen Kasten innerhalb des Bienestaates, sowie auf umweltbedingte Plastizit{\"a}t. Diploide Eier, aus denen sich K{\"o}niginnen und Arbeiterinnen entwickeln, sind genetisch identisch. Dennoch entwickeln sich K{\"o}niginnen wesentlich schneller zum Adulttier als Arbeiterinnen, sind als Imago gr{\"o}ßer, leben wesentlich l{\"a}nger und zeigen andere Verhaltensweisen. Diese Unterschiede werden durch eine differentielle larvale F{\"u}tterung initiiert. Im Anschluss an das Larvenstadium und somit nach erfolgter Kastendetermination, entwickeln sich die Bienen {\"u}ber eine Puppenphase (verdeckelte Phase) zum Imago. Adulte Bienen klimatisieren das zentrale Brutareal auf einer mittleren Temperatur von 35°C konstant. Bienen, die bei niedrigeren Temperaturen innerhalb des physiologisch relevanten Bereichs aufwachsen, weisen Defizite im olfaktorischen Lernverhalten und in der Tanzkommunikation auf. M{\"o}gliche neuronale Korrelate f{\"u}r altersbedingte, temperatur- und kastenspezifische Unterschiede im olfaktorisch gesteuerten Verhalten sollten in dieser Arbeit betrachtet werden. Die strukturellen Analysen konzentrierten sich dabei auf prim{\"a}re (Antennalloben) und sekund{\"a}re (Pilzk{\"o}rper-Calyces)olfaktorische Verarbeitungszentren im Gehirn von sich entwickelnden und adulten Tieren beider Kasten. Synchron verdeckelte Brutzellen beider Kasten wurden unter kontrollierten Bedingungen im Inkubator herangezogen. Neuroanatomische Untersuchungen wurden an fixierten Gewebeschnitten mittels einer Doppelfluoreszenzf{\"a}rbung mit Fluor-Phalloidin und anti-Synapsin Immuncytochemie durchgef{\"u}hrt. Diese Doppelmarkierung erm{\"o}glichte die Visualisierung und Quantifizierung individueller Synapsenkomplexe (Microglomeruli) im Pilzk{\"o}rper-Calyx. Phalloidin bindet an verschiedene F-Aktin Isoformen und kann zum Nachweis von F-Aktin im Insektennervensystem verwendet werden. F-Aktin wird w{\"a}hrend der Entwicklung in Wachstumskegeln und in adulten Gehirnen in pr{\"a}synaptischen Endigungen und dendritischen Dornen exprimiert. Pr{\"a}synaptische Elemente wurden durch den Einsatz eines spezifischen Antik{\"o}rpers gegen das Drosophila-Vesikeltransportprotein Synapsin I charakterisiert. Mit Hilfe der konfokalen Laser-Scanning Mikroskopie wurde die exakte r{\"a}umliche Zuordnung der Fluoreszenzsignale anhand optischer Schnitte durch die Pr{\"a}parate realisiert. Anhand dieser Methodik konnten erstmals {\"u}ber reine Volumenanalysen hinausgehende Messungen zur synaptischen Strukturplastizit{\"a}t im Pilzk{\"o}rper-Calyx durchgef{\"u}hrt werden. Die Untersuchungen an Gehirnen in den verschiedenen Puppenstadien zeigten Unterschiede im Entwicklungsverlauf der Gehirne mit dem Fokus auf die Bildung antennaler Glomeruli und calycaler Microglomeruli. Unterschiede in der Gehirnentwicklung verdeutlichten die ontogenetische Plastizit{\"a}t des Gehirns der Honigbiene. Entsprechend der k{\"u}rzeren Puppenphase der K{\"o}niginnen bildeten sich sowohl antennale Glomeruli als auch alle Untereinheiten (Lippe, Collar, Basalring) des Calyx etwa drei Tage fr{\"u}her aus. Direkt nach dem Schlupf zeigten quantitative Analysen innerhalb der Pilzk{\"o}rper-Calyces eine signifikant geringere Anzahl an Microglomeruli bei K{\"o}niginnen. Diese neuronale Strukturplastizit{\"a}t auf verschiedenen Ebenen der olfaktorischen Informationsverarbeitung korreliert mit der kastenspezifischen Arbeitsteilung. Die Arbeit liefert Erkenntnisse {\"u}ber den Einfluss eines wichtigen kontrollierten Umweltparameters, der Bruttemperatur, w{\"a}hrend der Puppenphase auf die synaptische Organisation der adulten Pilzk{\"o}rper-Calyces. Bereits geringe Unterschiede in der Aufzuchtstemperatur (1°C) beeinflussten signifikant die Anzahl von Microglomeruli in der Lippenregion des Calyx beider weiblicher Kasten. Die maximale Anzahl an MG entwickelte sich bei Arbeiterinnen bei 34.5°C, bei K{\"o}niginnen aber bei 33.5°C. Neben dieser entwicklungsbedingten neuronalen Plastizit{\"a}t zeigt diese Studie eine starke altersbedingte Strukturplastizit{\"a}t der MG w{\"a}hrend der relativ langen Lebensdauer von Bienenk{\"o}niginnen. Hervorzuheben ist, dass die Anzahl an MG in der olfaktorischen Lippenregion mit dem Alter anstieg (~55\%), in der angrenzenden visuellen Collarregion jedoch abnahm (~33\%). Die in der vorliegenden Arbeite erstmals gezeigte umweltbedingte Entwicklungsplastizit{\"a}t sowie altersbedingte synaptische Strukturplastizit{\"a}t in den sensorischen Eingangsregionen der Pilzk{\"o}rper-Calyces k{\"o}nnte kasten- und altersspezifischen Anpassungen im Verhalten zugrunde liegen.}, subject = {Biene}, language = {en} } @phdthesis{Thom2002, author = {Thom, Corinna}, title = {Dynamics and Communication Structures of Nectar Foraging in Honey Bees (Apis mellifera)}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-3601}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2002}, abstract = {In this thesis, I examined honey bee nectar foraging with emphasis on the communication system. To document how a honey bee colony adjusts its daily nectar foraging effort, I observed a random sample of individually marked workers during the entire day, and then estimated the number and activity of all nectar foragers in the colony. The total number of active nectar foragers in a colony changed frequently between days. Foraging activity did not usually change between days. A honey bee colony adjusts its daily foraging effort by changing the number of its nectar foragers rather than their activity. I tested whether volatiles produced by a foraging colony activated nectar foragers of a non-foraging colony by connecting with a glass tube two colonies. Each colony had access to a different green house. In 50\% of all experiments, volatile substances from the foraging colony stimulated nectar foragers of the non-foraging colony to fly to an empty feeder. The results of this study show that honey bees can produce a chemical signal or cue that activates nectar foragers. However, more experiments are needed to establish the significance of the activating volatiles for the foraging communication system. The brief piping signal of nectar foragers inhibits forager recruitment by stopping waggle dances (Nieh 1993, Kirchner 1993). However, I observed that many piping signals (approximately 43\%) were produced off the dance floor, a restricted area in the hive where most waggle dances are performed. If the inhibition of waggle dances would be the only function of the brief piping signal, tremble dancers should produce piping signals mainly on the dance floor, where the probability to encounter waggle dancers is highest. To therefore investigate the piping signal in more detail, I experimentally established the foraging context of the brief piping signal, characterized its acoustic properties, and documented for the first time the unique behavior of piping nectar foragers by observing foragers throughout their entire stay in the hive. Piping nectar foragers usually began to tremble dance immediately upon their return into the hive, spent more time in the hive, more time dancing, had longer unloading latencies, and were the only foragers that sometimes unloaded their nectar directly into cells instead of giving it to a nectar receiver bee. Most of the brief piping signals (approximately 99\%) were produced by tremble dancers, yet not all tremble dancers (approximately 48\%) piped. This suggests that piping and tremble dancing have related, but not identical functions in the foraging system. Thus, the brief piping signals may not only inhibit forager recruitment, but have an additional function both on and off the dance floor. In particular, the piping signal might function 1. to stop the recruitment of additional nectar foragers, and 2. as a modulatory signal to alter the response threshold of signal receivers to the tremble dance. The observation that piping tremble dancers often did not experience long unloading delays before they started to dance gave rise to a question. A forager's unloading delay provides reliable information about the relative work capacities of nectar foragers and nectar receivers, because each returning forager unloads her nectar to a nectar receiver before she takes off for the next foraging trip. Queuing delays for either foragers or receivers lower foraging efficiency and can be eliminated by recruiting workers to the group in shortage. Short unloading delays indicate to the nectar forager a shortage of foragers and stimulate waggle dancing which recruits nectar foragers. Long unloading delays indicate a shortage of nectar receivers and stimulate tremble dancing which recruits nectar receivers (Seeley 1992, Seeley et al. 1996). Because the short unloading delays of piping tremble dancers indicated that tremble dancing can be elicited by other factors than long unloading delays, I tested whether a hive-external stimulus, the density of foragers at the food source, stimulated tremble dancing directly. The experiments show that tremble dancing can be caused directly by a high density of foragers at the food source and suggest that tremble dancing can be elicited by a decrease of foraging efficiency either inside (e.g. shortage of receiver bees) or outside (e.g. difficulty of loading nectar) the hive. Tremble dancing as a reaction to hive-external stimuli seems to occur under natural conditions and can thus be expected to have some adaptive significance. The results imply that if the hive-external factors that elicit tremble dancing do not indicate a shortage of nectar receiver bees in the hive, the function of the tremble dance may not be restricted to the recruitment of additional nectar receivers, but might be the inhibition or re-organization of nectar foraging.}, subject = {Bienen }, language = {en} } @phdthesis{Streit2004, author = {Streit, Sebastian}, title = {Automatische Identifizierung bei sozialen Insekten : Design und Praxistest}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-8962}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2004}, abstract = {Design und Implementierung eines RFID basierten Systems f{\"u}r soziale Insekten (Hummeln, Bienen)}, subject = {Soziale Insekten}, language = {de} } @phdthesis{Muenz2015, author = {M{\"u}nz, Thomas Sebastian}, title = {Aspects of neuronal plasticity in the mushroom body calyx during adult maturation in the honeybee Apis mellifera}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-111611}, school = {Universit{\"a}t W{\"u}rzburg}, year = {2015}, abstract = {Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around three weeks with various duties inside the hive such as tending the brood or cleaning and building cells. After this period workers switch to outdoor tasks and become foragers collecting nectar, pollen and water. With this behavioral transition, workers face tremendous changes in their sensory environment. In particular, visual sensory stimuli become important, but also the olfactory world changes. Foragers have to perform a completely new behavioral repertoire ranging from long distance navigation based on landmark orientation and polarized-skylight information to learning and memory tasks associated with finding profitable food sources. However, behavioral maturation is not a purely age-related internal program associated with a change, for example, in juvenile hormone titers. External factors such as primer pheromones like the brood pheromone or queen mandibular pheromone can modulate the timing of this transition. In this way colonies are able to flexibly adjust their work force distribution between indoor and outdoor tasks depending on the actual needs of the colony. Besides certain physiological changes, mainly affecting glandular tissue, the transition from indoor to outdoor tasks requires significant adaptations in sensory and higher-order integration centers of the brain. The mushroom bodies integrate olfactory, visual, gustatory and mechanosensory information. Furthermore, they play important roles in learning and memory processes. It is therefore not surprising that the mushroom bodies, in particular their main input region, the calyx, undergo volumetric neuronal plasticity. Similar to behavioral maturation, plastic changes of the mushroom bodies are associated with age, but are also to be affected by modulating factors such as task and experience. In my thesis, I analyzed in detail the neuronal processes underlying volumetric plasticity in the mushroom body. Immunohistochemical labeling of synaptic proteins combined with quantitative 3D confocal imaging revealed that the volume increase of the mushroom body calyx is largely caused by the growth of the Kenyon cell dendritic network. This outgrowth is accompanied by changes in the synaptic architecture of the mushroom body calyx, which is organized in a distinct pattern of synaptic complexes, so called microglomeruli. During the first week of natural adult maturation microglomeruli remain constant in total number. With subsequent behavioral transition from indoor duties to foraging, microglomeruli are pruned while the Kenyon cell dendritic network is still growing. As a result of these processes, the mushroom body calyx neuropil volume enlarges while the total number of microgloumeruli becomes reduced in foragers compared to indoor workers. In the visual subcompartments (calyx collar) this process is induced by visual sensory stimuli as the beginning of pruning correlates with the time window when workers start their first orientation flights. The high level of analysis of cellular and subcellular process underlying structural plasticity of the mushroom body calyx during natural maturation will serve as a framework for future investigations of behavioral plasticity in the honeybee. The transition to foraging is not purely age-dependent, but gets modulated, for example, by the presence of foragers. Ethyl oleate, a primer pheromone that is present only in foragers, was shown to delay the onset of foraging in nurse bees. Using artificial application of additional ethyl oleate in triple cohort colonies, I tested whether it directly affects adult neuronal plasticity in the visual input region of the mushroom body calyx. As the pheromonal treatment failed to induce a clear behavioral phenotype (delayed onset of foraging) it was not possible to show a direct link between the exposure to additional ethyl oleate and neuronal plasticity in mushroom body calyx. However, the general results on synaptic maturation confirmed my data of natural maturation processes in the mushroom body calyx. Given the result that dendritic plasticity is a major contributor to neuronal plasticity in the mushroom body calyx associated with division of labor, the question arose which proteins could be involved in mediating these effects. Calcium/calmodulin-dependent protein kinase II (CaMKII) especially in mammals, but also in insects (Drosophila, Cockroach), was shown to be involved in facilitating learning and memory processes like long-term synaptic potentiation. In addition to presynaptic effects, the protein was also revealed to directly interact with cytoskeleton elements in the postsynapse. It therefore is a likely candidate to mediate structural synaptic plasticity. As part of my thesis, the presence and distribution of CaMKII was analyzed, and the results showed that the protein is highly concentrated in a distinct subpopulation of the mushroom body intrinsic neurons, the noncompact Kenyon cells. The dendritic network of this population arborizes in two calyx subregions: one receiving mainly olfactory input - the lip - and the collar receiving visual input. This distribution pattern did not change with age or task. The high concentration of CaMKII in dendritic spines and its overlap with f-actin indicates that CaMKII could be a key player inducing structural neuronal plasticity associated with learning and memory formation and/or behavioral transitions related to division of labor. Interestingly CaMKII immunoreactivity was absent in the basal ring, another subregion of the mushroom body calyx formed almost exclusively by the inner compact Kenyon cells and known to receive combined visual and olfactory input. This indicates differences of this mushroom body subregion regarding the molecular mechanisms controlling plastic changes in corresponding Kenyon cells. How is timing of behavioral and neuronal plasticity regulated? The primer pheromone ethyl oleate was found in high concentrations on foragers and was shown to influence behavioral maturation by delaying the onset of foraging when artificially applied in elevated concentrations. But how is ethyl oleate transferred and how does it shift the work force distribution between indoor and outdoor tasks? Previous work showed that ethyl oleate concentrations are highest in the honeycrop of foragers and suggested that it is transferred and communicated inside the colony via trophallaxis. The results of this thesis however clearly show, that ethyl oleate was not present inside the honey crop or the regurgitate, but rather in the surrounding tissue of the honey crop. As additionally the second highest concentration of ethyl oleate was measured on the surface of the cuticle of forgers, trophallaxis was ruled out as a mode of transmission. Neurophysiological measurements at the level of the antennae (electroantennogram recordings) and the first olfactory neuropil (calcium imaging of activity in the antennal lobe) revealed that the primer pheromone ethyl oleate is received and processed as an olfactory stimulus. Appetitive olfactory conditioning using the proboscis extension response as a behavioral paradigm showed that ethyl oleate can be associated with a sugar reward. This indicates that workers are able to perceive, learn and memorize the presence of this pheromone. As ethyl oleate had to be presented by a heated stimulation device at close range, it can be concluded that this primer pheromone acts via close range/contact chemoreception through the olfactory system. This is also supported by previous behavioral observations. Taken together, the findings presented in this thesis revealed structural changes in the synaptic architecture of the mushroom body calyx associated with division of labor. For the primer pheromone ethyl oleate, which modulates the transition from nursing to foraging, the results clearly showed that it is received via the olfactory system and presumably acts via this pathway. However, manipulation experiments did not indicate a direct effect of ethyl oleate on synaptic plasticity. At the molecular level, CaMKII is a prime candidate to mediate structural synaptic plasticity in the mushroom body calyx. Future combined structural and functional experiments are needed to finally link the activity of primer pheromones like ethyl oleate to the molecular pathways mediating behavioral and synaptic plasticity associated with division of labor in Apis mellifera. The here identified underlying processes will serve as excellent models for a general understanding of fundamental mechanisms promoting behavioral plasticity.}, subject = {Biene}, language = {en} }