@article{BoulosSaeedChatterjeeetal.2021, author = {Boulos, Joelle C. and Saeed, Mohamed E. M. and Chatterjee, Manik and B{\"u}lb{\"u}l, Yagmur and Crudo, Francesco and Marko, Doris and Munder, Markus and Klauck, Sabine M. and Efferth, Thomas}, title = {Repurposing of the ALK inhibitor crizotinib for acute leukemia and multiple myeloma cells}, series = {Pharmaceuticals}, volume = {14}, journal = {Pharmaceuticals}, number = {11}, issn = {1424-8247}, doi = {10.3390/ph14111126}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-250258}, year = {2021}, abstract = {Crizotinib was a first generation of ALK tyrosine kinase inhibitor approved for the treatment of ALK-positive non-small-cell lung carcinoma (NSCLC) patients. COMPARE and cluster analyses of transcriptomic data of the NCI cell line panel indicated that genes with different cellular functions regulated the sensitivity or resistance of cancer cells to crizotinib. Transcription factor binding motif analyses in gene promoters divulged two transcription factors possibly regulating the expression of these genes, i.e., RXRA and GATA1, which are important for leukemia and erythroid development, respectively. COMPARE analyses also implied that cell lines of various cancer types displayed varying degrees of sensitivity to crizotinib. Unexpectedly, leukemia but not lung cancer cells were the most sensitive cells among the different types of NCI cancer cell lines. Re-examining this result in another panel of cell lines indeed revealed that crizotinib exhibited potent cytotoxicity towards acute myeloid leukemia and multiple myeloma cells. P-glycoprotein-overexpressing CEM/ADR5000 leukemia cells were cross-resistant to crizotinib. NCI-H929 multiple myeloma cells were the most sensitive cells. Hence, we evaluated the mode of action of crizotinib on these cells. Although crizotinib is a TKI, it showed highest correlation rates with DNA topoisomerase II inhibitors and tubulin inhibitors. The altered gene expression profiles after crizotinib treatment predicted several networks, where TOP2A and genes related to cell cycle were downregulated. Cell cycle analyses showed that cells incubated with crizotinib for 24 h accumulated in the G\(_2\)M phase. Crizotinib also increased the number of p-H3(Ser10)-positive NCI-H929 cells illustrating crizotinib's ability to prevent mitotic exit. However, cells accumulated in the sub-G\(_0\)G\(_1\) fraction with longer incubation periods, indicating apoptosis induction. Additionally, crizotinib disassembled the tubulin network of U2OS cells expressing an α-tubulin-GFP fusion protein, preventing migration of cancer cells. This result was verified by in vitro tubulin polymerization assays. In silico molecular docking also revealed a strong binding affinity of crizotinib to the colchicine and Vinca alkaloid binding sites. Taken together, these results demonstrate that crizotinib destabilized microtubules. Additionally, the decatenation assay showed that crizotinib partwise inhibited the catalytic activity of DNA topoisomerase II. In conclusion, crizotinib exerted kinase-independent cytotoxic effects through the dual inhibition of tubulin polymerization and topoisomerase II and might be used to treat not only NSCLC but also multiple myeloma.}, language = {en} } @article{EckardtStasikKrameretal.2021, author = {Eckardt, Jan-Niklas and Stasik, Sebastian and Kramer, Michael and R{\"o}llig, Christoph and Kr{\"a}mer, Alwin and Scholl, Sebastian and Hochhaus, Andreas and Crysandt, Martina and Br{\"u}mmendorf, Tim H. and Naumann, Ralph and Steffen, Bj{\"o}rn and Kunzmann, Volker and Einsele, Hermann and Schaich, Markus and Burchert, Andreas and Neubauer, Andreas and Sch{\"a}fer-Eckart, Kerstin and Schliemann, Christoph and Krause, Stefan W. and Herbst, Regina and H{\"a}nel, Mathias and Frickhofen, Norbert and Noppeney, Richard and Kaiser, Ulrich and Baldus, Claudia D. and Kaufmann, Martin and R{\´a}cil, Zdenek and Platzbecker, Uwe and Berdel, Wolfgang E. and Mayer, Jiř{\´i} and Serve, Hubert and M{\"u}ller-Tidow, Carsten and Ehninger, Gerhard and St{\"o}lzel, Friedrich and Kroschinsky, Frank and Schetelig, Johannes and Bornh{\"a}user, Martin and Thiede, Christian and Middeke, Jan Moritz}, title = {Loss-of-function mutations of BCOR are an independent marker of adverse outcomes in intensively treated patients with acute myeloid leukemia}, series = {Cancers}, volume = {13}, journal = {Cancers}, number = {9}, issn = {2072-6694}, doi = {10.3390/cancers13092095}, url = {http://nbn-resolving.de/urn:nbn:de:bvb:20-opus-236735}, year = {2021}, abstract = {Acute myeloid leukemia (AML) is characterized by recurrent genetic events. The BCL6 corepressor (BCOR) and its homolog, the BCL6 corepressor-like 1 (BCORL1), have been reported to be rare but recurrent mutations in AML. Previously, smaller studies have reported conflicting results regarding impacts on outcomes. Here, we retrospectively analyzed a large cohort of 1529 patients with newly diagnosed and intensively treated AML. BCOR and BCORL1 mutations were found in 71 (4.6\%) and 53 patients (3.5\%), respectively. Frequently co-mutated genes were DNTM3A, TET2 and RUNX1. Mutated BCORL1 and loss-of-function mutations of BCOR were significantly more common in the ELN2017 intermediate-risk group. Patients harboring loss-of-function mutations of BCOR had a significantly reduced median event-free survival (HR = 1.464 (95\%-Confidence Interval (CI): 1.005-2.134), p = 0.047), relapse-free survival (HR = 1.904 (95\%-CI: 1.163-3.117), p = 0.01), and trend for reduced overall survival (HR = 1.495 (95\%-CI: 0.990-2.258), p = 0.056) in multivariable analysis. Our study establishes a novel role for loss-of-function mutations of BCOR regarding risk stratification in AML, which may influence treatment allocation.}, language = {en} }